

Biological Suppression of Some Soil Borne Pathogenic Fungi by Soil Amendment with Compost and Natural Compound of Plant Origin

A Thesis Submitted for the Degree of Ph.D. of Science in Microbiology

$\mathbf{B}\mathbf{y}$

Mona Jehad Mohammed Wadi

B.Sc. of Science in Microbiology – Chemistry, 1997 M.Sc. of Science in Microbiology, 2007

Under Supervision of

Dr. Fatma Abdel-Wahab Helemish

Prof. of Microbiology, Botany
Department, College of Women for
Art, Science and Education,
Ain Shams University

Dr. Atef Fathalla M. Abdel- Wahab

Prof. of Microbiology, Dept. of Agric. Res. Microbiology, Soils, Water and Environ. Res. Institute, Agricultural Research Center

Dr. Zeinab M.H. Kheiralla

Prof. of Microbiology, Botany Department, College of Women for Art, Science and Education, Ain Shams University

Dr. Ehab Ali D. Sarhan

Associate Professor of Plant pathology, Plant Pathology Research Institute, Agricultural Research Center

Dr. Mona M. Abou El Nour

Lecturer of Microbiology, Botany
Department, College of Women for Art,
Science and Education, Ain Shams University

Department of Botany

College of Women for Arts, Science and Education, Ain Shams University

2017

Biological Suppression of Some Soil Borne Pathogenic Fungi by Soil Amendment with Compost and Natural Compound of Plant Origin

A thesis Submitted to Botany Department, Women's College, Ain Shams University

For

The Degree of Ph.D. in Science (Microbiology)

By

Mona Jehad Mohammed Wadi

B.Sc. in Science, Microbiology - Chemistry 1997 M.Sc.in Science, Microbiology 2007

Department of Botany

College of Women for Arts, Science and Education, Ain Shams University

2017

This thesis has not been submitted for degree at this or at any other university.

Mona 2017

Acknowledgement

First, I thank God for giving me strength and ability to accomplish this study successfully.

I would like to express my sincere thanks and appreciation to **Prof. Dr. Zeinab Mohammad Hassan Kheiralla** Prof. of Microbiol., Fac. of Women, Ain Shams University for her supervision, support, guidance, valuable comments, encouragement and revision the manuscript of this thesis.

I owe very special thanks to **Prof. Dr. Atef Fathalla Mohamed Abdel-Wahab** Prof. of Microbiol., Dept. of Agric. Res. Microbiol., Soils Water and Environ. Res. Institute, ARC, Giza for his supervision, continual assistance, valuable discussion and revision the manuscript of this thesis.

I am deeply grateful to **Dr. Ehab Ali D. Sarhan.** Associate Professor of Plant Pathol., Legume and Forage Diseases Res. Dept., Plant Pathol. Res. Inst., ARC, Giza for his supplying all facilities to perform and finish this work. Sincere thanks and appreciation for his supervision, unfailing patience, great assistance, valuable criticism, guidance and encouragement throughout this study.

My deepest gratitude, appreciation, acknowledgment and indebtedness to **Dr. Mona Mohammad Abou El Nour** Lecturer of Microbiol., Fac. of Women, Ain Shams Univ. for her countless fruitful discussions and for giving me every possible help through the different stages of this work. Special thanks are also due to her carefully reviewing the manuscript and providing invaluable comments and suggestion for its improvement.

I am truly grateful for all staff members of Botany Dept., Fac. of Women, Ain Shams Univ.

Special thanks are to all staff members of Unit Biofertilizers, Microbiol. Dept., Soils, Water and Environ. Res. Inst., (ARC). Grateful appreciation is extended to all staff members of Legume and Forage Diseases Res. Dept., Plant Pathology Research Institute, (ARC).

Dedication

I dedicate this work to the spirit of my supervisor Prof. Dr. Fatma Abdel-Wahab Helemish and the mother of my husband.

Also, I dedicate this work to my beloved husband, daughters and sons as well as to my dearest parents, sisters and brothers and to all people who supported me.

Abstract

Plant pathogens are responsible for many acute and continual diseases of crop plants that can result in severe economic losses, the fungal diseases represent one of the major cause of decreased yields of agricultural crops all over the world. Amendment soil with compost found to be suppressive against plant diseases caused by soil-borne fungi in various cropping systems. Many naturally occurring compounds found in plants have been shown to possess antimicrobial functions and serve as a source of antimicrobial agents against plant pathogens. Therefore, the use of plants or plant products as biocides is of great importance.

Three pomegranate types (two Palestinian and one Egyptian) were investigated in an *in vitro* experiment to evaluate the antimicrobial properties of their peel powder aqueous extract against two soil-borne fungi, i.e. *Fusarium oxysporum* and *Rhizoctonia solani*. The growth response was evaluated using food-poisoning technique (%inhibition). The antimicrobial effect of different preparations of compost and the peel powder (compost tea and compost plus pomegranate peel tea) prepared using water and alkaline water were also investigated against the two tested fungi.

Results demonstrated that the aqueous extract of Palestinian Sweet pomegranate possess the highest activity against the two tested fungi, i.e. *F. oxysporum* and *R. solani*, even at the two investigated concentrations. The combination between compost plus Palestinian Sour pomegranate tea prepared either with water or alkaline water recorded the highest inhibition percent against the two tested fungi. Accordingly,

the Palestinian Sour pomegranate peels was considered to be the most potent type.

The response of soil-borne pathogens of lupine plant to the inhibitory effect of the most potent botanical plant powder, selected from the *in vitro* test, individually or combined with compost were investigated in a pot experiment using soil artificially infested with the tested fungi (*F. oxysporum* and *R. solani*) as well as under field conditions (naturally infested with soil-borne fungi). Different formulations of compost and peel powder were suggested for this evaluation. The suggested compost amendments were compost, compost with the selected botanical plant powder, compost tea, compost tea with the selected botanical plant extract and the aqueous extract of the selected botanical plant as well as the chemical fungicide Rizolex-T was also investigated.

Results of pot experiments revealed that all applied treatments either single or in combination have a positive effect and significantly reduced the incidence of damping-off caused by *R. solani* at both preand post-emergence stages of lupine plants compared with the untreated infested soil. In addition, all treatments also induced a marked reduction in wilt percentage of lupine plants over those untreated plants infested with *F. oxysporum*.

Results illustrated also that the highest effective treatment, which demonstrated reduction in the incidence of damping-off was observed for compost plus pomegranate peel tea. It recorded low pre- and postemergence damping-off and recorded higher percent of survived plants with significant differences compared to all the other treatments. Furthermore, the same treatment exhibited the lowest percentage of wilt and highest percentage of survived plants.

The highest values of nodules/plant, dry weight of nodules, nitrogenase activity and all growth parameters were due to application of the combined treatment compost plus pomegranate tea and the fungicide Rizolex-T mostly with no significant differences.

The investigated compost amendments were evaluated for the control of damping-off disease and wilt disease of lupine plants in a field trial that are naturally infested with soil borne fungi. All compost amendments and chemical treatment provided some improvement in seedling emergence (pre- and post-) of lupine plants over the untreated control. In addition, the recorded data illustrated that treatments of compost either applied alone or in combination found to be effective in decreasing disease incidence. The greatest reduction of disease incidence was achieved by compost plus pomegranate tea, which recorded 91.0% survived plants followed by compost tea (90.33%), Rizolex-T (90.0%) and the aqueous extract of pomegranate peels (90.0%).

All treatments induced a positive disease suppression, however; differences among treatments were not significant. The combination of compost plus pomegranate tea recorded the highest values of all investigated growth parameters, highest rate of nodulation status, increasing the NPK content in plant tissues (shoots and roots) and enhancing yield and its components compared to untreated control.

Key words: Lupine, *F. oxysporum R. solani*, damping-off and wilt diseases, compost, compost tea, pomegranate peel, Rizolex-T.

Contents

Title	Page
Abstract	I
List of Tables	
List of Figures	
List of Abbreviations	
1. Introduction	1
2. Aim of the work	5
3. Review of Literature	6
3.1. The economic importance of legumes	6
3.2. Soil borne fungal diseases of legumes	7
3.2.1. Fusarium oxysporum	8
A. Lupine	8
B. Other legumes	9
3.2.2. Rhizoctonia solani	11
A. Lupine	12
B. Other legumes	13
3.3. Control of soil borne pathogens	15
3.3.1. Biological resources	16
3.3.1.1. Biological control using botanicals	17
1. Pomegranate	17
A. <i>In vitro</i>	17
B. <i>In vivo</i>	21
2. Other plants	22
A. In vitro	22
B. <i>In vivo</i>	30
3.3.1.2. Biological control using microbial	
antagonists	33
A. <i>In vitro</i>	33
B. <i>In vivo</i>	44
3.3.2. Organic resources	53
A. In vitro	54
B. <i>In vivo</i>	56
3.3.3. Compost tea	59
A In vitro	60

B. <i>In vivo</i>	61
3.3.4. Combination of compost with nutrients and/or	
bioagents	63
4. Materials and Methods	69
4.1. Materials	69
4.1.1. Pomegranate peels	69
4.1.2. Compost	70
4.1.3. Media used	72
a. Nutrient agar	72
b. Martin medium	72
c. Jensen medium	72
d. Potato dextrose agar	73
4.1.4. Microbial materials	73
a. Phytopathogenic fungi	73
b. Rhizobium inoculum	73
4.1.5. Lupine seeds	74
4.1.6. Fungicide	74
4.2. Methods	74
4.2.1. Extracts preparation	74
a. Aqueous pomegranate peels extract	74
b. Compost tea	75
c. Compost plus pomegranate tea	76
4.2.2. Laboratory experiments	76
4.2.2.1. Antifungal activity assay	76
a. Aqueous pomegranate peels extract	76
b. Compost teas	77
c. The fungicide	78
4.2.3. Pot experiments	78
a. Preparation of soil and fungal inoculums	78
b. Seeds and soil treatments	79
4.2.4. Field experiment	81
4.2.5. Analytical methods	84
4.2.5.1. Bulk density	84
4.2.5.2. pH and electrical conductivity	84
4.2.5.3. Organic carbon and organic matter	84

4.2.5.4. Total nitrogen, phosphorus, potassium and	
micronutrients	
4.2.5.5. Total soluble nitrogen	
4.2.5.6. Available micronutrients (DTPA-Extractable)	
4.2.5.7. Determination of total phenols	
4.2.5.8. Determination of anthocyanins	
4.2.5.9. Determination of tannins	
4.2.5.10. Carbon dioxide evolution	
4.2.5.11. Germination index (GI)	
4.2.5.12. Extinction coefficient (E ₄ /E ₆ ratio)	
4.2.5.13. Microbial determination	
4.2.5.14. Dehydrogenases activity	
4.2.6. Plant Measurements	
4.2.6.1. Shoot and root dry weight	
4.2.6.2 Shoot and root N, P, and K	
4.2.6.3. Chlorophyll content	
4.2.6.4. Nitrogenase enzyme activity	
4.2.6.5. Crude protein	
4.2.7. Statistical analysis	
5. Results	
5.1. <i>In vitro</i> evaluation of the antifungal activity of natural	
and chemical compounds	
a. Pomegranate peel extract	
b. Compost tea and compost plus pomegranate tea	
c. Chemical fungicide	
5.2. Physical, chemical and microbial characters	
a. Pomegranate peels powder	
b. Compost tea and compost plus pomegranate tea	
5.3. <i>In vivo</i> assessment the antifungal activity of the	
selected pomegranate peel and compost on soil	
borne pathogen of lupine plants	
5.3.1. Evaluation the antifungal activity of the	
investigated treatments under artificial infestation	
with the two tested fungi, pot experiments	
a. R. solani	

1. Effect on disease incidence	111
2. Nodulation status	115
3. Growth parameters	119
b. <i>F. oxysporum</i>	122
1. Effect on disease incidence	122
2. Nodulation status	125
3. Growth parameters	128
5.3.2. Evaluation the antifungal activity of the investigated	
treatments under field conditions	131
1. Damping-off and wilt diseases	131
2. Growth parameters	135
3. Nodulation status	138
4. NPK accumulation	141
5. Lupine yield and its components	144
6. Discussion.	149
6.1. <i>In vitro</i> evaluation of the antifungal activity of natural	
and chemical compounds	149
a. Pomegranate peel extract	149
b. Compost tea and compost plus pomegranate tea	156
c. Chemical fungicide	162
6.2. Evaluating the effect of natural and chemical	
compounds on diseases and growth of lupine in pot	
and field experiments	164
6.2.1. Damping-off and wilt diseases	164
6.2.2. Growth parameters	175
6.2.3. Nodulation status	179
6.2.4. NPK content	180
6.2.5. Yield components	183
7. English Summary	192
8. Conclusion	199
9. Recommendations	202
10. References.	204
Arabic summary	
Arabic abstract	

List of Tables

	Title	Page
Table 1:	Physical, chemical and microbiological analysis of compost	71
Table 2:	The main physical, chemical and microbiological traits of the soil before cultivation	83
Table 3:	The antifungal effect of aqueous pomegranate peel extracts on linear growth inhibition (%) of the tested fungi	95
Table 4:	The antifungal effect of compost tea and compost plus pomegranate tea on linear growth inhibition (%) of the tested fungi	100
Table 5:	The effect of different concentrations of the fungicide Rizolex-T on linear growth inhibition (%) of the tested fungi.	105
Table 6:	Physical and chemical analysis of the different types of pomegranate peels powder	108
Table 7:	Physical, chemical and microbiological analyses of compost tea and compost plus Palestinian Sour pomegranate tea.	110
Table 8:	The effect of the investigated treatments on the percentages of damping-off and survived lupine plants, pot experiments	114
Table 9:	The effect of the investigated treatments on nodulation status of lupine plants 75 days after sowing, pot experiments	117

Table 10:	The effect of the investigated treatments on some growth parameters of lupine plants 75 days after sowing, pot experiments	120
Table 11:	The effect of the investigated treatments on the percentages of wilt and survived lupine plants 75 days after sowing, pot experiments	123
Table 12:	The effect of the investigated treatments on nodulation status of lupine plants 75 days after sowing, pot experiments	126
Table 13:	The effect of the investigated treatments on the growth parameters of lupine plants 75 days after sowing, pot experiments	129
Table 14:	The effect of the investigated treatments on lupine damping-off, wilt and survived plants under field conditions of natural infestation with soil-borne fungi	132
Table 15:	The effect of the investigated treatments on the growth parameters of lupine plants 75 days after sowing under field conditions of natural infestation with soil-borne fungi	136
Table 16:	The effect of the investigated treatments on nodulation status of lupine plants 75 days after sowing under field conditions of natural infestation with soil-borne fungi	139
Table 17:	The effect of the investigated treatments on NPK content of lupine plants 75 days after sowing under field conditions of natural infestation with soil-borne fungi	142

Table 18:	The effect of the investigated treatments on yield	
	of lupine plants 150 days after sowing under field	
	conditions of natural infestation with soil-borne	
	fungi	146