MOLECULAR GENETIC IDENTIFICATION OF INDUCED VARIANTS IN MILK THISTLE (SILYBUM MARIANUM L.)

ABDOALLAH ABOELNASR ABOELNASR SHARAF

B.Sc. Agric. Sc. (Genetics), Ain Shams University, 2003 M.Sc. Agric. Sc. (Genetics), Ain Shams University, 2008

A thesis submitted in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in Agricultural Science (Genetics)

Department of Genetics Faculty of Agriculture Ain Shams University

MOLECULAR GENETIC IDENTIFICATION OF INDUCED VARIANTS IN MILK THISTLE (SILYBUM MARIANUM L.)

By

ABDOALLAH ABOELNASR ABOELNASR SHARAF

B.Sc. Agric. Sc. (Genetics), Ain Shams University, 2003 M.Sc. Agric. Sc. (Genetics), Ain Shams University, 2008

Under the supervision of

Dr. Samir Abdel-Aziz Ibrahim

Prof. Emeritus of Genetics, Department of Genetics, Faculty of Agriculture, Ain Shams University (Principal Supervisor).

Dr. Aly Zain Elabidin Abdelsalam

Prof. Emeritus of Genetics, Department of Genetics, Faculty of Agriculture, Ain Shams University.

Approval Sheet

MOLECULAR GENETIC IDENTIFICATION OF INDUCED VARIANTS IN MILK THISTLE (SILYBUM MARIANUM L.)

By

ABDOALLAH ABOELNASR ABOELNASR SHARAF

B.Sc. Agric. Sc. (Genetics), Ain Shams University, 2003 M.Sc. Agric. Sc. (Genetics), Ain Shams University, 2008

This thesis for Ph.D. degree has been approved by:

Houssam El-Din Mohamed Fathy El-Wakil
Alia Ahmed Mohamed El-Seoudy Prof. Emeritus of Genetics, Faculty of Agriculture, Ain Shams University.
Aly Zain Elabidin Abdelsalam Prof. Emeritus of Genetics, Faculty of Agriculture, Ain Shams University.
Samir Abdelaziz Ibrahim Prof. Emeritus of Genetics, Faculty of Agriculture, Ain Shams University.

Date of Examination: 22/5/2012

التحديد الوراثى الجزيئى للاختلافات المستحدثة لنبات شوك الغزال

ر سالة مقدمة من

عبدالله أبوالنصر أبوالنصر شرف

بكالوريوس علوم زراعية (وراثة)، جامعة عين شمس، 2003 ماجستير علوم زراعية (وراثة)، جامعة عين شمس، 2008

الحصول على درجة دكتور فلسفة فى العلوم الزراعية (وراثة)

قسم الوراثة كلية الـزراعة جامعة عين شمس

2012

ABSTRACT

Abdoallah Aboelnasr Aboelnasr Sharaf: Molecular Genetic Identification of Induced Variants of Milk thistle (*Silybum marianum* L.). Unpublished Ph.D. Thesis. Department of Genetics, Faculty of Agriculture, Ain Shams University, 2012.

Five ecotypes from milk thistle (*Silybum marianum*) were used in this study to improve its morphological characters and\or active ingredients properties. Results of HPLC analysis of (*Silybum marianum*) Seeds from five different ecotypes and ten of its induced types by two doses of ethylmethanesulfonate (EMS) and Sodium Azide respectively, and irradiated by 4 doses of gamma rays showed that the percentages of silymarin ranged from 0.25 % to 3.3 %. The highest was Accession L.2 which can be considered as an important source for silymarin. And the lowest percentage was in accession 5 L.5.

Degenerate primers were designed for a given multiple alignment of DNA sequences of Leucocyanidin oxygenase (LDOX) gene using ClustalW algorithm. The results of designed degenerate primer showed that there was a homology found between the designed primers and the DNA templates for the accession numbers with at least 80% identity. The result of sequencing of eluted band of the amplified RT-PCR products of the four accessions were detected at the molecular weight (250 bp) were BLASTed to prove the role of Leucocyanidin oxygenase (LDOX) gene in the taxifolin synthesis and to detect the mutation effect in its DNA sequence.

Keywords: Milk thistle, ClustalW tool, degenerate PCR, Leucocyanidin oxygenase (LDOX) gene, *insilico* PCR.

ACKNOWLEDGMENT

Thanks for my God Allah, the great and almighty on his uncountable and infinite graces, thanks for Allah, the God and only creator for all creatures, who created me, guided me to the Islam and teached me things that I didn't know.

I wish to express my great and deepest gratitude and thanks to all people who helped me to make this thesis, specially,

Prof.Dr. Aly Z.E. Abdelsalam, Prof. of Genetics, Faculty of Agriculture, Ain Shams University for the best acquisition, continuous supervision, kind encouragement, sincere help criticism and precious advices during the progress of this work and the preparation of the manuscript.

Prof.Dr. Samir Abdel-Aziz Ibrahim, Prof.of Genetics, Faculty of Agriculture, Ain Shams University for his close supervision and personal and scientific help during the period of this study.

Prof. Dr.Hosam El wakeel, Prof.of Genetics, Faculty of Agriculture (saba basha), Alexanderia University for his useful suggestions and continuous guidance through the course of investigation.

Prof. Dr. Khaled Abdel Aziz, Prof. of Genetics, Faculty of Agriculture, Ain Shams University for the facilities he offered to finish this work.

My friends, **Dr. Asmaa Abu Shady**, **Dr. Sherif Edrees and Dr. Hala Fawzy Eissa** for teaching me the guidelines of working in molecular genetics laboratories.

All staff in all laboratories of Genetics Department and (ACGEB) and all staff in Environmental Stress Lab. (ESL) for helping and real cooperation.

Firstly and finally I wish to thank my big family, parents, brothers and sister and all my samll family, wife, doughter and son for moral support and making the life possible.

CONTENTS	Page
LIST OF TABLES	iv
LIST OF FIGURES	V
I-INTRODUCTION	
II- REVIEW OF LITERATURE	3
1. Description of silybum	3
1.1. Agronomic characterization	3
1.2. Chemical composition	4
2. Induced mutations using gamma rays and chemical reagents	7
3. Extraction and separation of silymarin by High Liquid Pressure Chromatography (HPLC)	12
4. Leucoanthocyanidin dioxygenase (LDOX) or Anthocyanidin synthase (ANS) gene	14
5. Blast program and clustal w alignment	17
6. Designing of degenerate primer using clustering	1,
algorithm	17
7. Reverse Transcriptase- Polymerase Chain Reaction (RT-PCR) with degenerate primers	19
III- MATERIALS AND METHODS	20
Plant materials	20
1.1. Botany of Silybum species	22
2. Methods	22
2.1. Mutagenic treatment	22
3. Extraction procedure	24
4. Measurement of Flavonolignans	24
4.1. Silymarin standard solution	24
4.2. Spectrophotometric method	24
4.3. HPLC assay	25

2.1. Molecular genetic studies	25
2.1.1. Extraction of RNA	25
2.1.2. RNA analysis	27
2.1.3. cDNA synthesis and LDOX gene RT-PCR	27
2.2. Gel electrophoresis	28
2.2.1. Electrophoresis stock solutions	28
2.3. LDOX gene sequencing	29
2.4. Data analysis	30
2.4.1. Basting by the query sequence	30
2.4.2. Detection of the consensus region and the design of	30
the degenerate primers	30
2.4.3. The module of primer select	31
2.4.4. Checking the specificity and uniqueness of the	31
degenerate primers	31
2.4.5. Insilico PCR module to predict and produce all the	32
true condition of PCR program	32
2.4.6. The usage of ClustalW algorithm to visualize the	32
consensus sequences and dendogram	32
IV- RESULTS AND DISCUSSION	34
1. Morphological characters	34
2. Mutations induction	35
2.2. M1 generation	36
2.3. M2 generation	36
3. Total silymarin by spectrophotometric analysis	37
4. High Performance Liquid Chromatography (HPLC)	38
analysis	30
5. Retrieving the homologous sequence by the Blast tool	40
6. Designing the degenerate primers	41
6.1. the results of MegAlign tool and the detection of	41
conserved region	71
6.2. The module of primer select	42
6.3. Checking for the quality and uniqueness of the	43

Arabic summary	1
VI- REFERANCES	54
V- SUMMARY	52
conserved protein domains	.,
10. Devising functional properties of similar sequences by	49
9. DNA sequence similarity and phylogenetic relationships	48
8. Sequence analysis of LDOX gene	48
cDNAs	.,
7. Detection of Leucocyanidin oxygenase (LDOX)	47
6.5. The result of InsilicoPCR module	46
sequence	•
6.4. Defining the degeneracy of the nucleotide in the DNA	44
sequences and primers.	
selected primers and the homology between the template	

LIST OF TABLES

No.		Page
1	Code number, description, GPS number and altitutation of the five milk thestile accessions under investigation.	22
2	Code number, Radiation doses, EMS and Sodium Azide concentrations applied on milk thestile samples under investigation.	23
3	LDOX degenerate oligonucleotide primer sequences	27
4	List of twenty induced types of <i>Silybum marianum</i> survived after first cultivation and its survived progeny which cultivated in second year.	37
5	Total Silymarin Percentage of seventeen induced including the five control samples types of Silybum marianum using spectrometric analysis.	38
6	Sequences producing signicinant alignments.	40
7	Products on intended target.	43
8	InsilicoPCR and product prediction.	45

LIST OF FIGURES

No.		Page
1	Morphological variations among different locations and varieties of silybum.	35
2	Chromatogram of methanolic standard extract of S. marianum (0.7 mg/mL).	39
3	Total silymarin percentages of fifteen induced types from Silybum marianum grouped in five clusters, each one consist from three samples using HPLC analysis.	39
4	Conserved sequence was presented for multiple sequences alignment of (<i>Hieracium pilosella</i> , <i>Chrysanthemum x morifolium</i> , <i>Lactuca sativa</i> and <i>Arabidopsis thaliana</i>) consensus sequence (+) was the red bar.	42
5	Amplification summary for forward and reverse primers showed the melting temperature (Tm) for forward and reverse primers, primers length, primer location and product length.	43
6	Detection of LDOX gene in Silybum marianum induced types (10L.1 and EML.2") and its control samples (L.1 and L.2) using cds primer.	47
7	Dendrogram demonstrating the relationships among Silybum marianum induced types (10L.1 and EML.2") and its control samples (L.1 and L.2) based on partial LDOX gene sequence.	49
8	Conserved domain of oxygenase of Silybum marianum types L.1, 10L.1, L.2 and EML.2" LDOX gene sequence respectively.	50

I.INTRODUCTION

Medicinal plants have been used to treat illness and disease for thousands of years; even now they are economically important, being used in the pharmaceutical, cosmetic, perfumery, and food industries. Recent years have witnessed an explosion in the popularity of natural products and cosmetic products containing natural extracts. The herbal products today symbolize safety in contrast to the synthetics that are regarded as unsafe to human and environment. Medicinal plants provide very little amount of the active constituents, so large amounts of the plant material shall be harvested to maintain the desired amount, which leads to the risk on the plants biodiversity and on the ecosystem. The global market value of medicinal plants exceeds 60 billion USD annually, so protection of wild life ecosystem diversity is crucial for the continued collection of medicinal plants. Half of the 20 000 medicinal plants used today are threatened with extinction.

S. marianum, a plant that grows throughout the Mediterranean, southern Europe and parts of the US, has been used for some 2000 years as both food and medicine. Silybum species are members of family Compositae/Asteraceae which has many folklore names, e.g., holy thistle, marian thistle, Mary thistle, MT, Our Lady's thistle, St. Marythistle, wild artichoke, Mariendistel. The active chemical component of milk thistle (MT) is silymarin, which is a combination of three flavonoids: 50% silybinin, 25% silychristin and 25% silydianin (Karen and Walterova 2005).

Silymarin is widely used as a hepatoprotectant and as a supportive therapy of liver disorders such as cirrhosis, hepatitis and fatty acid infiltration due to alcohol and toxic chemicals. Silymarin also showed the beneficial effects in the case of radiation injury to the membrane of liver cells. Studies suggested that silymarin and its polyphenolic fraction could have beneficial effects on some risk factors of atherosclerosis. The results have shown that silymarin has hypolipidemic effect (**Soboleva** *et al.*,

2006) Silymarin has anticarcinogenic and cancer chemopreventive effects. While almost the entire plant can be used for food, its seeds that are used to make MT seed extract. The seeds are the only part of this plant that has silymarin. Also, 25% of seed weight is a fixed oil with a great potential as edible oil (**Rizk** *et al.*, 1970).

Mutation induction is a useful technique in plant breeding used to improve traits without disrupting the original genetic constitution of the crop. It has been used extensively in the improvement of several crops, especially vegetative propagated species without extensive hybridization and backcrossing. Mutation breeding has led to release of more than 2,250 plant varieties in the past 70 years (**Sleper and Poehlman 2006**).

Phenylpropanoids are basic components that feeds into various biosynthetic pathways that generate a wide range of structurally related polyphenolic compounds (Oliver and Jez 2008), Anthocyanidin synthase (ANS) catalyzes the penultimate step in the biosynthesis of anthocyanin. This reaction is responsible for the formation of the colored anthocyanidins from the colorless leucoanthocyanidins (Wei et al., 2010), The anthocyanin and proanthocyanidin (PA) biosynthetic pathways share common intermediates until leucocyanidin, which may be used by leucoanthocyanidin dioxygenase (LDOX) to produce anthocyanin (Abrahams et al., 2003). An inhibition of gene expression was detected for anthocyanidin synthase (EC 1.14.11.19). These effects are interpreted as a feedback regulation by changed polyphenol levels (Fischer et al., 2006).

Our objectives in this study:

- Inducing mutant plants with higher active ingredients and/or useful morphological characters.
- Proving the role of Leucocyanidin oxygenase (LDOX) gene which a key enzyme in the taxifolin synthesis (the most important precursor of silymarin biosynthesis) and isolate it.

II- REVIEW OF LITERATURE

1. Description of silybum

Milk thistle is a tall, biennial herb, five to ten feet high, with hard, green, shiny leaves that have spiny edges and are streaked with white along the veins. The solitary flower heads are reddish-purple with bracts ending in sharp spines. The small hard fruits in the flowers, known technically as achenes, resemble seeds and are the part of the plant used medicinally.

1.1. Agronomic characterization

Omer *et al.* (1993) indicated that the seeds of *S. marianum* are used for the treatment of liver diseases. Seeds were collected from Al-Ayat province, and plants were cultivated using a combination of two row spacings (25 and 50 cm), 2 N levels (70 and 140 kg/ha) and 3 K levels (55, 85 and 115 kg K₂O/ha). At the wider row spacing, seed flavonolignan content was higher, but seed yield declined by 7.4-7.8% when compared with the narrow row spacing. The highest rates of N and K fertilization increased seed yield, oil yield and seed oil content when compared with lower rates, but N and K rates had no meaningful effect on seed flavonolignan content.

Hetz et al. (1995) mentioned that in crossing experiments between S. marianium and S. eburneum, the number of fruits produced was relatively high as compared to the two parental species. All the F1 plants showed the variegated leaf characteristic of S. marianum, whereas after selfing the F2 plants had completely green and variegated leaves in a ratio of about 3:1 indicating that the leaf colour is monofactorially inherited. This proves that the two species are only variants. Using leaf colour as the genetic marker, the outcrossing rate in field experiments was studied. Since the outcrossing rate was only about 2% on the average, Silybum is predominately a self-pollinator.

Ram et al. (2005) studied phenotypic and genotypic coefficients of variability, heritability in the broad sense and genetic advance which