

PARAMETERS AFFECTING ULTRA-FINE GRINDING OF TALC ORE

By

Eng. Abdullah Mohamed El-Bendary Hassan

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
MINING ENGINEERING

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT

PARAMETERS AFFECTING ULTRA-FINE GRINDING OF TALC ORE

By

Eng. Abdullah Mohamed El-Bendary Hassan

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
MINING ENGINEERING

Under the Supervision of

Prof. Dr. Salah El-Din Mohamed El-Mofty Prof. Dr. Mohamed Kamal Abdel-Rahman

Professor of Mineral Processing Mining, Petroleum, and Metallurgical Department Faculty of Engineering, Cairo University Professor of Mineral Processing Central Metallurgical R&D Institute (CMRDI)

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT

PARAMETERS AFFECTING ULTRA-FINE GRINDING OF TALC ORE

By

Eng. Abdullah Mohamed El-Bendary Hassan

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE

in

MINING ENGINEEERING

Approved by the **Examining Committee:**

Prof. Dr. Salah. E. El-Mofty Principle Advisor

Mining, Petroleum, and Metallurgy Department Faculty of Engineering, Cairo University

Prof. Dr. Mohamed Kamal Abdel-Rahman Advisor

Central Metallurgical R&D Institute (CMRDI)

Internal Examiner Prof. Dr. Hassan El-Shall

Mining, Petroleum, and Metallurgy Department Faculty of Engineering, Cairo University

Prof. Dr. Ahmed Abdullah Sadeek Seifelnassr **External Examiner**

Mining Department

Faculty of Petroleum and Mining Engineering, Suez University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT

Engineer's Name: Abdullah Mohamed El-Bendary Hassan

Date of Birth: 26 / 6 / 1987 **Nationality:** Egyptian

E-mail: abdullah_elbendary@yahoo.com

Phone: 01064826425

Address:

Registration Date: 1 / 10 / 2012 **Awarding Date:** / / 2015 **Degree:** Master of Science

Department: Mining, Petroleum and Metallurgy Engineering

Supervisors:

Prof. Dr. Salah El-Din Mohamed El-Mofty Prof. Dr. Mohamed Kamal Abdel-Rahman

Examiners:

Prof. Dr. Ahmed Abdullah Sadeek Seifelnassr (External Examiner)

Prof. Dr. Hassan El-Shall (Internal Examiner)

Prof. Dr. Salah. E. El-Mofty (Principle advisor)

Prof. Dr. Mohamed. K. Abdel-Rahman (Advisor)

Title of Thesis:

PARAMETERS AFFECTING ULTRA-FINE GRINDING OF TALC ORE

Key Words:

Stirred Mills; Ultra-fine grinding; Planetary mill; Ultra-Fine Talc Uses and Specifications; Functional Fillers.

Summary:

Fine and ultra-fine grinding have several applications in most of industrial fields such as advanced ceramics, porcelain, cement, paper coating, plastic and pigments. The selling price of ultra-fine minerals is highly increased compared with conventional ground minerals. Different industrial minerals that are most frequently used as fillers and extenders are alumina hydrate, barite, calcium carbonate, diatomite, kaolin, mica, talc, and wollastonite. Stirred ball mills (attritor mill) are much more efficient for fine grinding and regrinding than conventional tumbling mills. Conventional milling requires long retention time and tremendous energy input for micron size production. This work aims to study the parameters affecting ultra-fine grinding of Egyptian talc from Shalatin locality of the Eastern Desert to produce an ultra-finer product less than ten microns using an attritor mill in order to be used as a filler material for different industrial applications such as paints, plastics, paper coating, and other advanced applications.

Acknowledgment

I would like to express my deep regards and sincere gratitude to Prof. Dr. Salah El-Din El-Mofty, Faculty of Engineering, Cairo University for his close supervision, and valuable stimulating guidance and fruitful discussion throughout this study.

I cannot pay the suitable gratitude to my supervisor Prof. Dr. Mohamed Kamal Abdel-Rahman, Head of Mineral Processing Laboratory, Central Metallurgical Research and Development Institute (CMRDI), for his guidance, patience and support.

Also, I offer my sincerest gratitude to Prof. Dr. Mohamed Abdel-Daym, professor of mineral processing, (CMRDI), for his kind assistance and support.

Last but not least, special thanks to the staff of Mineral Processing Laboratory, CMRDI.

Table of Contents

	Pages
Acknowledgement	I
Table of Contents	II-III
List of Tables	IV
List of Figures	V-VII
Abstract	VIII
Chapter 1: Introduction	1
-	1
2.1. Background2.2. Thesis objectives	1
Chapter 2: Literature Review	2-14
2.1. Ultra-fine grinding technologies	2
2.2. Stirred mill 2.2.1. Tower mill	3
2.2.1. Tower min 2.2.2. Stirred media detritor (SMD)	4 5
2.2.3. ISA mill	5 5
2.2.4. Stirred mill operation and performance	6
2.3. Grinding mechanism	8
2.4. Ultra-fine grinding of industrial minerals	9
2.4.1. Ultra-fine grinding of talc	9
2.4.2. Ultra-fine grinding of calcium carbonate	11
2.4.3. Ultra-fine grinding of white sand	11
2.5. Uses of ultra-fine industrial minerals	12
2.5.1.1 Paper manufacturing	12 12
2.5.1.1. Paper manufacturing 2.5.1.2. Cosmetic	12
2.5.1.2. Cosmetic 2.5.1.3. Paints	13
2.5.1.4. Plastic	13
2.5.2. Uses of ultra-fine calcium carbonate	13
2.5.3. Uses of ultra-fine silica sand	14
Chapter 3: Experimental Work	15-24
•	15
3.1. Pulverization & sampling of talc	
3.2. Characterization of the ore samples	15
3.2.1. Mineralogical, morphological and chemical analysis	15
3.2.1.1. Microscopic analysis	15
3.2.1.2. X-ray diffraction analysis	15
3.2.1.3. Scanning electron microscopy	16
3.2.1.4. Chemical analysis (XRF)	16 17
3.2.2. Size analysis for crushed product3.3. Grindability measurements for talc sample	17 17
3.4. Attrition scrubber and ultra-fine grinding	17 10

3.4.1. Attrition scrubbing of talc	19
3.4.1.1. Size analysis of fraction less than 45 microns	20
3.4.2. Ultra-fine dry grinding in planetary mill	20
3.4.3. Wet ultra-fine grinding in attritor mill	21
3.4.4. Dry ultra-fine grinding and air classification	22
Chapter 4: Results and Discussion	25-78
4.1. Talc characterizations	25
4.1.1. X-Ray diffraction	25
4.1.2. Chemical analysis	25
4.1.3. Microscopic analysis	26
4.2. Grindability study of talc	28
4.3. Feed preparation for wet and dry grinding	29
4.3.1. Size analysis of crushed talc	29
4.4. Attrition scrubbing and ultra-fine grinding	29
4.4.1. Attrition scrubbing of talc	29
4.5. Ultra-fine grinding of talc	33
4.5.1. Planetary mill ultra-fine dry grinding	33
4.5.1.1. Effect of mill filling	33
4.5.1.2. Effect of ball sizes	34
4.5.1.3. Effect of rotational speed	35
4.5.1.4. Effect of ratio of media to talc volume	36
4.5.2. Wet ultra-fine grinding by attritor mill	39
4.5.2.1. Effect of media size	39
4.5.2.2. Effect of stirrer speed (r.p.m)	43
4.5.2.3. Effect of slurry solid content	45
4.5.2.4. Wet regrinding in attritor	47
4.5.2.4.1. Effect of slurry solid content	47
4.5.2.4.2. Effect of ratio of media to talc	50 53
4.5.2.5. Effect of wet grinding on talc morphology and crystal structure	53
4.5.3. Dry ultra-fine grinding and air classification	55
4.5.3.1. Dry ultra-fine grinding using attritor mill	56
4.5.3.1.1. Effect of ball size distributions	56
4.5.3.1.2. Effect of mill filling	59
4.5.3.1.3. Effect of stirrer speed	62
4.5.3.2. Air classification	64
4.5.3.3. Dry regrinding by attritor mill	66
4.5.3.3.1. Effect of ratio of media to talc	70
4.5.3.4. Effect of dry grinding on talc morphology and crystallinity	74
4.5.3.5. Dry ultra-fine grinding of calcium carbonate and white sand	77
Chapter 5: Summary, Conclusions and recommendations for future work	79-81
5.1. Summary	79
5.2. Conclusions	80
5.3. Recommendations for future work	81
References	82-86

List of Tables

	Pages
Table 3.1: Planetary mill operation conditions	21
Table 3.2: First step attritor wet grinding operation conditions at different grinding times	22
Table 3.3: Second step attritor wet grinding operation conditions at different grinding times	22
Table 3.4: First step attritor dry grinding operation conditions	23
Table 3.5: Air classification parameters	24
Table 3.6: (a &b) Factor levels and dry regrinding box-behnken design	24
Table 4.1: chemical analysis of talc sample	26
Table 4.2: XRF results of attritioned scrubbing product	32
Table 4.3: Optical properties of crushed and attritioned of talc for one hour	32
Table 4.4: Change in crystal size with time during wet grinding	54
Table 4-5: Box-behnken design with different responses at different experimental runs	67
Table 4.6 :ANOVA response surface quadratic model for attritor dry regrinding	67
Table 4.7a: ANOVA for response surface 2FI model analysis of variance for attritor dry regrinding (d_{50})	68
Table 4.7b: ANOVA for response surface 2FI model analysis of variance for attritor dry regrinding (d_{90})	68
Table 4.8: Change in crystal size with time during dry grinding	75
Table 4.9. The d_{90} and d_{50} for white sand, calcium carbonate and talc at 30 and 60 min grinding times	78

List of Figures

	Pages
Figure 2.1: Jet mill	2
Figure 2.2: Media collisions with agitator arms and milled particles	3
Figure 2.3:Tower mill	4
Figure 2.4: Stirred media detritor	5
Figure 2.5: ISA mill	6
Figure 2.6: Fragmentation mechanisms	8
Figure 2.7: Particle size distribution for attrition, cleavage, and abrasion	9
Figure 3.1: Photograph of jaw crusher	15
Figure 3.2: Brucker X-ray diffractometer	16
Figure 3.3 : Scanning electron microscope	16
Figure 3.4: Advanced axios panalytical (XRF)	17
Figure 3.5: Wedag shaker	17
Figure 3.6 : Roller crusher	19
Fig 3.7: Standard bond ball mill	19
Figure 3.8: Union process attritor, model 1S	19
Figure 3.9: COR-2001 Laser particle size analyzer	20
Figure 3.10: "FRITSCH" Planetary ball mill	21
Figure 3.11 Air classifier	23
Figure 4.1: XRD of talc sample	25
Figure 4.2: General view for talc aggregates	26
Figure 4.3:Talc (T) intercalated with serpentine (S)	26
Figure 4.4: Opaque minerals are distributed through talc matrix	27
Figure 4.5: Carbonate grains	27
Figure 4.6: Cryptocrystalline silica	27
Figure 4.7: Particle size distribution for work index	28
Figure 4.8: Size distribution of crushed talc	29
Figure 4.9: Particle size distribution of attritioned products	30
Figure 4.10: Size analysis of fraction less than 45 microns from attrition	31
Figure 4.11: Relation between attrition time and fraction less than 45 microns	31
Figure 4.12: Suggested laboratory attrition scrubbing flow-sheet	32
Figure 4.13: Size analysis of planetary dry grinding at different mill filling	33
Figure 4.14: Effect of mill filling on d_{90} and d_{50} during planetary dry grinding	34
Figure 4.15: Size analysis of planetary dry grinding at different ball sizes	35
Figure 4.16: d_{90} and d_{50} at different ball sizes	35
Figure 4.17: Size analysis at different rotational speeds	36
Figure 4.18: d_{90} and d_{50} at different rotational speeds	36
Figure 4.19: Size analysis of planetary dry grinding at different media to talc	37
volume, 300 rpm, during 30 min grinding	
Figure 4.20: Size analysis of planetary dry grinding at different media to talc	37
volume, 300 rpm, during 60 min grinding	
Figure 4.21: Relationship between media percentage and grinding time on d_{90}	38
during planetary dry regrinding process	23
Figure 4.22: Relationship between media percentage and grinding time on d_{50}	38
in planetary grinding	- 0
Figure 4.23: Grinding time versus ball sizes	40

Figure 4.24: Size distribution of product wet grinding at different times by	40
using 4 mm alumina balls	
Figure 4.25: Size distribution of products wet grinding at different times by	41
using 10 mm alumina balls	
Figure 4.26: Size analysis of fraction less than 45 µm wet grinding at different	41
times by using 4 mm balls	
Figure 4.27: Size analysis of fraction less than 45 µm wet grinding at different	42
times by using 10 mm balls	
Figure 4.28: XRD of fraction less than 45 μm of product wet ground by using	42
4 mm ball at 15 min	
Figure 4.29: Effect of stirrer speed during wet grinding	43
Figure 4.30: Size distribution of products wet grinding at different stirrer	44
speeds	
Figure 4.31: Size distribution of fraction less than 45 μm of product wet	44
grinding at different stirrer speeds	4.5
Figure 4.32: Effect of slurry solid content	45
Figure: 4.33 Size distribution of product ground at different slurry solid	46
contents	4.0
Figure: 4.34 Size analysis of fraction less than 45 µm at different slurry solid	46
contents	40
Figure 4.35: Size analysis of products at different slurry solid contents during	48
30 min grinding	40
Figure 4.36: Size analysis of products at different slurry solid contents during	48
90 min grinding	40
Figure 4.37: The relationship between slurry solid content (%) and grinding	49
time on d_{90}	40
Figure 4.38: The relationship between slurry solid content (%) and grinding	49
time on d_{50}	5 0
Figure 4.39: Size analysis of products at 83.5 % media and different grinding	50
times Figure 4.40. Size analysis of products at 88.0/ modio and different arinding	5 1
Figure 4.40: Size analysis of products at 88 % media and different grinding times	51
	51
Figure 4.41: Size analysis of products at 90 % media and different grinding times	31
Figure 4.42: The relationship between media percentage and grinding time on	52
d ₉₀ during wet regrinding process	34
Figure 4.43:The relationship between media percentage and grinding time on	52
d_{50} during wet regrinding process	34
Figure 4.44: XRD of talc wet regrinding for different times at 460 rpm	53
Figure: 4.45 SEM for first and second (regrinding) steps wet grinding	54
Figure 4.46: Ultra-fine Wet Grinding Laboratory Flow sheet	55
Figure 4.47: Effect of ball size distribution	57
Figure 4.48: Size distributions at different ball size distributions of dry	57 57
grinding at 35% mill filling	51
Figure 4.49: Size distributions of fraction less than 45 microns at different ball	58
size distributions of dry grinding at 35% mill filling	50
Figure 4.50: XRD of -45 µm of product ground with 4 mm ball at 30 min dry	58
grinding and 35% mill filling	20
Figure 4.51: Effect of mill filling Percentage	59
Figure 4.52: Size distributions of product dry ground at different mill filling	60

Figure 4.53: Size distributions at different ball distributions at 25% mill filling	60
Figure 4.54: Size distributions of fraction less than 45 microns at 70% 10 mm	61
ball:30% 4 mm ball size distributions	
Figure 4.55: Size distributions of fraction less than 45 microns at 25% mill	61
filling	
Figure 4.56: Effect of stirrer speed on the percentage weight passed from	62
45μmscreen during the dry grinding process	
Figure 4.57: Size distributions of products dry milling at 25% mill filling,	63
different stirrer speeds and different times	
Figure 4.58: Size distributions of fraction less than 45 micron at different	63
stirrer speeds and different times	
Figure 4.59: The relationship between feed rate and motor speed on weight	64
percentage of fine product separated in cyclone II	
Figure 4.60: The relationship between feed rate and motor speed on d_{90} of fine	65
product separated in cyclone II	
Figure 4.61: The relationship between feed rate and motor speed on d_{50} of fine	65
product separated in cyclone II	
Figure 4.62: dry grinding followed by air classification flow sheet	66
Figure 4.63: Surface response for box-behnken design for d ₉₀ as a function of	69
different factors at 45 min grinding time.	
Figure 4.64: Surface response for box-behnken design for d_{50} as a function of	69
different factors at 45 min grinding time.	
Figure 4.65: The best desirable optimum parameters for dry regrinding	70
Figure 4.66: Standard error of box-behnken dry regrinding design	70
Figure 4.67: Size analysis of dry regrinding at 460 rpm, 20% mill filling, and	72
different ratio of media to particle volume during 30 min grinding	=-
Figure 4.68: Size analysis of dry regrinding at 460 rpm, 20% mill filling, and	72
different ratio of media to particle volume during 60 min grinding	5 2
Figure 4.69: The relationship between media percentage and grinding time on	73
d ₉₀ during attritor dry regrinding process	72
Figure 4.70: The relationship between media percentage and grinding time on	73
d ₅₀ during attritor dry regrinding process	7.4
Figure 4.71: XRD of talc dry grinding for 1.5 hr at 460 rpm	74 75
Figure: 4.72 SEM for first and second (regrinding) steps wet grinding	75
Figure 4.73: Dry grinding and regrinding laboratory flow sheet	76
Figure 4.74 Particle size distributions of different ores feed	77 78
Figure 4.75 Particle size distributions of ultra-fine grinding at 30 min.	
Figure 4.76 Particle size distributions of ultra-fine grinding at 60 min.	78

Abstract

This work aims to study the parameters affecting ultra fine grinding of an Egyptian talc to produce particle size less than 10 microns in order to be used as a filler material for different industrial applications such as paints, plastics, paper coating, and other advanced applications. The experimental program involves attrition scrubbing, wet and dry grinding on crushed talc (less than 6630 microns) using attritor mill. The dry grinding was carried out using both attritor and planetary mills. In case of attritor dry grinding process, two schematic models were carried out, the first one is dry grinding followed by air classification, the second one was two step dry grinding. The studied parameters were grinding time, media size, stirrer speed, solid in the slurry content, media to talc ratio by volume, and mill filling.

The results showed that in attrition scrubbing, about 65% by weight with d_{90} and d_{50} 29 and 10 µm was obtained with 8.5 % loss of ignition, 88 % ISO brightness and 94 % whiteness compared with a 11.4 % loss of ignition, 83 % ISO brightness and 91 % whiteness in the feed. In wet grinding about 96 % by weight with maximum size reduction d_{90} and d_{50} are 12 µm, 3.8 µm. The ultra fine grinding using attritor mill followed by an air classifier showed that 78.5% by weight with d_{90} & d_{50} 19 µm and 7.8 µm separated at the maximum motor speed. Meanwhile the two steps grinding in attritor mill showed that about 95.5 % by weight with d_{90} and d_{50} are 14.4 µm, 4.2 µm. In case of dry grinding using planetary mill a ground product with d_{90} and d_{50} are 13.6 µm, 4.3 µm was obtained. The scanning electron microscope of ultra-fine grinding showed that distortion of platy structure occurred after 180 min and size of d_{90} & d_{50} 12 µm, 3.8 µm in wet grinding and after 90 min and size of d_{90} & d_{50} 12 µm, 3.8 µm in dry grinding. Therefore, in order to keep the platy structure and crystallinity of talc to be used as a filler material in different industrial applications such as plastic and paint industries it is recommended not to grind talc more than the above mentioned times.

The submicron ultra-fine grinding products of Egyptian talc could be used in different industrial filler applications such as paints, ceramic and paper coating.

Chapter 1: Introduction

1.1. Background

Fine and ultra-fine grinding are very important in many industrial fields such as advanced ceramics, porcelain, cement, paper coating, plastic and pigments. Ultra-fine grinding of minerals is so essential for production of filler for different industrial applications. The selling price of ultra-fine minerals is highly increased compared with conventional ground minerals. There is a growing demand for ultra-fine minerals as fillers in most industries. The objective of using these industrial minerals is also to improve the performance of many products and to reduce their manufacturing costs. Different industrial minerals that are most frequently used as filler and extenders are alumina hydrate, barite, calcium carbonate, diatomite, kaolin, mica, talc, and wollastonite. In plastic industry calcium carbonate and kaolin are usually added to plastics to impart impact strength, or to provide thermal stability. Platy minerals such as talc and mica improve flexural strength. In paper industry white minerals such as kaolin, talc, and calcium carbonate used as filler and coating pigments. These minerals are also widely used as filler in paint industry. For most of industrial applications, these minerals must be ground to submicron sizes. Ultra-fine ground talc less than 10 microns is used in different applications. In the plastics platy talc in ultra-fine size is used to improve its mechanical and surface properties such as stretch resistance. In the paper industry talc is used as fillers, to control pitch and stickies and in coating formulation. In oil paints talc is used as an extender and suspending agent. In recent years ultrafine grinding to the submicron range become essential due to the development of the new functional materials such as new ceramics and electronic materials for various industrial fields. The most famous ultrafine grinders are fluid energy mills such as jet mill and agitated mills such as stirred media mills [1].

Stirred ball mills (attritor mill) are much more efficient for fine grinding and regrinding than conventional tumbling mills where conventional mills require long retention time and tremendous energy input for micron size production. Stirred media mills have the ability to produce extremely fine powders with narrow particle size distributions, this feature is so important in fillers and pigments [2, 3]. Attrition grinding can also be used as a pre-concentration method in talc mineral processing industry. Further removal of carbonates and the separation of talc from chlorite can be obtained by flotation process.

1.2. Thesis objectives

The main object of this thesis is to understand the influence of different parameters on ultra-fine grinding (<10 micron) of Egyptian talc from Shalatin locality of the Eastern Desert. An attritor mill (wet and dry) is used to achieve the desired size which is utilized as a filler material for different industrial applications such as paints, plastics and paper coating. This work will also study the availability of talc preconcentration by attrition technique. Additionally the study covers the effect of grinding by using attritor mill on talc morphology and structural changes. Finally a comparative ultra-fine grinding of white sand and calcium carbonate is studied at the optimum conditions obtained during talc ultra-fine grinding.

Chapter 2: Literature Review

2.1. Ultra-fine grinding technologies

In recent years, ultrafine grinding to the submicron range become essential due to the development of the new functional materials such as new ceramics and electronic materials for various industrial fields [4, 5]. The most famous ultrafine grinders are fluid energy mills such as jet mills and agitated mills such as stirred media mills [1]. Jet mill was first developed for producing particle size less than 100 microns and having a high degree of purity. Its design incorporates a horizontal cylindrical grinding chamber having fluid jets which enter tangentially. Feed materials enter by way of a venture arrangement. Grinding is achieved by multiple particle/particle interaction [6]. Jet mills stress a material by entraining particles in a gas stream and impingent the particles on a hard surface or against each other (figure 2.1). Jet mills are extensively used in the pharmaceutical industry due to their ability to produce fine particles without the wear of mechanical parts [1]. Although the jet mill has several advantages, but it is still an energy intensive process as only 2- 5% of the energy supplied is used to create new surfaces Mebtoul et al [7]. Nakach et al [8] disclosed the opposed fluidized bed jet mill disadvantages such as poor particle size and its distribution, expensive, low capacity, mechanically complex and requires regular maintenance.

Another type of mills used to produce ultra-fine particle size, are the stirred media mills, which are similar to ball mills except they contain an agitator, which supplies the necessary energy to the grounded particles instead of rotation of the vessel. The agitator allows the media to collide with a much higher force than is possible in the conventional ball mill [1]. The importance of stirred media mills increases steadily, because of an increasing demand for ultra-fine particles. In many cases, the grinding by a stirred ball mill (attritor mill) to submicron range has been applied commercially. Because of their easy operation, simple construction, high grinding rate and low energy consumption compared with the other fine grinding machines, stirred ball mills recently have received more and more attention [4, 5].

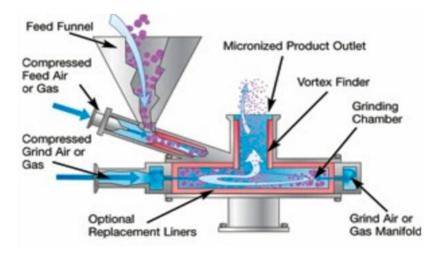


Figure 2.1: Jet mill

2.2. Stirred mill

Stirred mill technology was applied in the ultra-fine grinding process in the pigment industry and it has wide applications in other industrial fields such as pharmaceuticals, ceramics, and chemical industries [9, 10]. It consists of a water cooled grinding tank, charged with media and agitated with a central impeller. Impact and attrition grinding occurs by the collision of the media with tank walls and collision of media with itself [11]. In stirred mill (attritor mill) the power providing (input) is directly used for driving of agitating media which is the key of grinding efficiency. The most advantage is that the grinding does not take place against the tank walls. So it enables little wear on the walls, and leading to longer service life of the vessel. Attritor mill could be used in wet or dry process. In wet grinding the impact action is created by the constant grinding media impinging due to its irregular movement. Shearing action is created as a result of spinning of the media in different rotations due to its random movement and, therefore, exerting shearing forces on the adjacent slurry. As a result, both liquid shearing force and media impact force are present. Such combined shearing and impact forces results in a great size reduction as well as good dispersion. Meanwhile, in dry milling the process is achieved by expanded moving bed of grinding media. This condition is described as kinematic porosity figure 2.2. The particles are subjected to various forces such as impact, rotational, tumbling, and shear; therefore, micron ranges fine powders can be easily obtained. Additionally, a combination of these forces creates more spherical particles than other impact-type milling equipment [12]

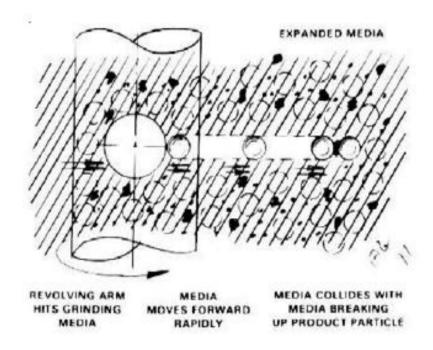


Figure 2.2: Media collisions with agitator arms and milled particles

There are two different classes of stirred mills that can be referred to as slow milling speed or high speed. The first class includes tower mill or Vertimill and