Synthesis and reaction of phthalazinone derivatives and their uses in separation of some nuclear elements

Thesis submitted

By

Sherif Mohamed khairy

M.Sc. (Chemistry) 2010

Supervisions

Prof. Dr. Maher Abdel Aziz EL-Hashash

Professor of Organic Chemistry, Chemistry Department, Faculty of Sciences, Ain Shams University.

Prof. Dr. Fakhry Abdelaziz El-bassiony

Professor of Organic Chemistry, Chemistry Department, Faculty of Sciences, Ain Shams University.

Asst.Prof. Dr. Sameh Ahmed Rizk

Associated Professor of Organic Chemistry, Chemistry Department, Faculty of Sciences, Ain Shams University.

Asst.Prof. Dr. Dalal Besanty Guirguis

Associated Professor of Organic Chemistry, Chemistry Department, Faculty of Sciences, Ain Shams University.

Prof. Dr. Laila. Atea Guirguis

Professor of Nuclear Chemistry. Department of Reactor Materials, Nuclear Material Authority Egypt.

Approval sheet

Name of candidate: Sherif Mohamed khairy

Degree: Ph.D.in chemistry

Thesis Title: Synthesis and reaction of phthalazinone derivatives and their uses in separation of some nuclear elements

This Thesis has been approved by:

1- Prof. Dr. Maher Abdel Aziz EL-Hashash

Professor of Organic Chemistry, Chemistry Department, Faculty of Sciences, Ain Shams University.

2-Prof. Dr. Fakhry Abdelaziz El-bassiony

Professor of Organic Chemistry, Chemistry Department, Faculty of Sciences, Ain Shams University.

3-Asst.Prof.Dr. Sameh Ahmed Rizk

Associated Professor of Organic Chemistry, Chemistry Department, Faculty of Sciences, Ain Shams University.

4-Asst.Prof .Dr. Dalal Besanty Guirguis

Associated Professor of Organic Chemistry, Chemistry Department, Faculty of Sciences, Ain Shams University.

5-Prof. Dr. Laila. Atea Guirguis

Professor of Nuclear Chemistry. Department of Reactor Materials , Nuclear Material Authority Egypt.

Approval
Prof .Dr.Ibrahim H.A.Badr
Head of Chemistry Department

CONTENTS

CONTENTS

Acknowledgement		
Aim of the present work		
Summary		

Chapter (1): Introduction

Introduction		1
Biological application	1	
phthalazine complex		2
Chemistry of phthalazines	5	
Primary synthesis of phthalazine derivatives	6	
1.1. From a benzene derivative as substrate and one synthon	6	
1.1.1. From 1,2-dialkylbenzenes	6	
1.1.2 From 1,2-dialdehydobenzenes	8	
1.1.3. From 1-aldehydo-2-ketobenzenes	8	
1.1.4. From 1-aldehydo-2-carboxybenzenes	9	
1.1.5. From 1-aldehydo-2-bromo benzenes(O-bromoarylaldehyde1)	9	
1.1.6. From 1-aldehydo-2-alkoxycarbonylbenzenes	11	
1.1.7. From 1-aldehydo-2-cyanobenzenes	11	
1.1.8. From 1,2-diketobenzenes	12	
1.1.9. From 1-keto-2-carboxybenzenes	13	
1.1.10. Using 1-keto-2-alkoxycarbonylbenzenes as substrates	19	
1.1.11. From 1-keto-2-carbamoylbenzenes or the like	20	
1.1.12. From 1,2-dicarboxybenzenes (phthalic acids)	21	

1.1.13. From 1,2-dicyanobenzenes (phthalonitriles)	22	
1.1.14. From 1-alkoxycarbonyl-2-cyanobenzenes	22	
1.1.15. From 1,2-dialkoxycarbonylbenzenes(phthalicesters)	23	
1.1.16.From 1,2-bis(chloroformyl)benzenes (phthaloyl chlorides)	24	
1.2. From other carbocyclic derivatives as substrates	24	
1.2.1. Bicyclo[4.2.0]octanes as substrates	24	
1.2.2. Indenes as substrates	25	
1.2.3Cyclheptanes as substrates	27	
1.3. From Pyridazine derivatives as substrates	27	
1.4. From 1,2,4,5-tetrazines as substrates	31	
1.5. From heterobicyclic derivatives as substrates	33	
1.5.1. 6-Azabicyclo[3.1.0]hexanes as substrates	33	
1.5.2.2-Benzopyrans assubstrates	33	
1.5.3. 3,2,4-Benzothiadiazepine as substrate	34	
1.5.4. 2,3-Benzoxazines as substrates	35	
1.5.5. Cinnoline as substrates	35	
1.5.5. Isobenzofurans as substrates	36	
1.5.6.1.Using1,3-dihydro-1,3-isobenzofurandiones (phthalic anhydrides)	36	
1.5.6.2. Using 1,3-dihydro-1-isobenzofuranones (phthalides)	38	
1.5.7. Isoindoles as substrates	43	
1.5.7.1. Using <i>N</i> -unsubstituted-1,3-isoindolinediones	43	
1.5.7.2. Using <i>N</i> -alkyl-1,3-isoindolinediones	43	
1.5.7.3. Using <i>N</i> -hydroxy-1,3-isoindolinediones	44	
1.5.7.4. Using 3-hydroxy-1-isoindolinones	44	

1.5.7.5. Using 3-imino-1-isoindolinones or 1,3-isoindolinediimines	45
1.5.7.6. Using N-amino-1,3-isoindolinediones	45
1.5.8. Isoquinolens as substrates	46
1.5.9. Pyridazino[4,5-d]pyridazines as substrates	52
1.5.10.Thieno[3,4-d]pyridazines as substrates	52
1.5.11.1,2,3-Triazolo[4,5-d]pyridazines as substrates	54
1.6. From heteropolycyclic derivatives as substrates	55
1.6.1.Benzo[1,2-c:4,5-c']difurans-benzenetetracarboxylic (1,2,4,5anhyd	drides) as substrates
1.6.2. Imidazo[1,2-b]isoquinolines as substrates	55
1.6.3. Oxazolo[2,3-a]isoindoles as substrates	56
2. Reactions of phthalazines and phthalazinones:	56
2.1. <i>C</i> -Alkylation or arylation	56
2.1.1. <i>C</i> -Alkylation with organometallic synthons	56
2.1.2. Alkanelysis of halogeno- or alkoxyphthalazines	60
2.2. N-Alkylation or arylation	62
2.3. N-Acylation	64
2.4. Oxidation	64
2.5. Reduction	65
2.6. Nitration	67
2.7. Cyclic adduct formation	68
2.8. Rearrangements	69
2.9. The Reissert reaction	69
2.10. Ring fission reactions	71
2.11. Thiation	72

2.12. Polymer formation	73
3. Complex formation	76
3.1phthalazine with iron carbonyl complex	77
3.2 Phthalazine Hydrazone complex with Transition Metals	78
3.3Phthalazine iridium complex	83
3.4Ruthenium phthalazine complexes	85
4. Applications of phthalazine derivatives:	86
4.1. Antimicrobial activity	86
4.2. Antihypertensive activity	90
4.3. Antithrombotic activity	93
4.4. Antidiabetic activity	95
4.5. Anticonvulsant activity	95
4.6. Antimalarial activity	97
4.7. Anti-trypanosomal activity	97
4.8. Anti-inflammatory activity	98
4.9. Anti-depressant activity	101
4.10. Antitumor activities	101
4.11. organic light-emitting diodes(OLED)	102
4.12.carbon membranes	103
5.Uranium recovery from phosphoric acid	104
5.1.Purification of wet process phosphoric acid(WPA) by organic solvents	106
5.2.Extraction uranium from wet process phosphoric acid (WPA) by organic	solvents
5.2.1.First process sodium hydrosulfite (Na ₂ S ₂ O ₄)	106
5.2.2.with octyl pyrophosphoric acid (OPPA)	107

5.2.3. The synergistic diethyl hexyl phosphoric acid – tri-octyl phos TOPO)	sphine oxide (DEHPA- 107
TOPO)	107
5.2.4.Octyl phenyl phosphoric acid system (OPAP) which extracts tet	ravalent uranium
5.2.4.Pyrophosphoric Acid Esters Solvent Extraction for Uranium	108
Chapter (2): Results and Discussion	
Part one 111	
1.Synthesis of 2,2-thiocarbonylbis(4-(3-chloro-4-methylphenyl)phtha	lazin)-1(2H)-one
1.1.Synthesis of 6-(3-chloro-4-methylphenyl) –[1,2,4]triazolo 3(2H)thione	[3,4-a] phthalazine -
2.Behaviour of towards 4-(3-Chloro-4-methylphenyl)phthalaz electrophiles	zin-1(2H)-one carbon
2.1. Reaction with ethyl chloroacetate	114
2.2. Reaction with halide monosaccharide	115
2.2.1. Reaction with 1-bromo-α-D-glucopyranose	115
2.2.2. Reaction with 1-bromo-α-D-arabinopyranose	115
2.3. Reaction with amino acids	117
2.3.1. Reaction with amino acid β-chloroalanine	117
2.3.2. Reaction with 2-amino-4-chloro-4-oxobutanoic acid	118
2.3.3. Reaction with in 2-amino-5-chloro-5-oxobutanoic acid	118
2.4. Reaction with benzoyl chloride.	119
2.5. Reaction with allylbromide	120
2.6. Reaction with 2-choroethanol	121
2.7. Reaction with phenyl isothiocyanate	123
2.8. Reaction with ethyl cyanoacetate	124
2.9. Reaction with piperidine under Mannich reaction .	125

2.10. Reaction with ethanol amine .	127	
2.11. Reaction with epichlorohydrine.	130	
3. Reaction with hydrazine hydrate	132	
4.Metal complex	135	
Part two		
Organic compounds could be used as ligand for uranium extraction	138	
Extraction of uranyl ion by Use of prepared organic compounds extraction	in the liquid-liqu	id
Extraction of uranyl ion	145	
Precipitation of uranium from the strip solution	161	
Chapter (3):Experimental	166	

References

Arabic Summary

List OF FIGURES

	RESULTS AND DISCUSSION	Page
Figure (1)	linear increase in the extraction percentage of uranyl ion	140
Figure (2)	infrared spectrophotometry $UO_2[4-(3-chloro-4-methylphenyl)-1-(2H)-phthalazinones]_2(NO_3)_2$ with uranyl nitrate together after solvent extraction process	141
Figure (3)	linear increase in the extraction percentage of uranyl ion	142
Figure (4)	infrared spectrophotometry $UO_2(Ethyl2-(1-oxo-4-(3-chloro-4-methylphenyl))$ phthalazine- $2(1H)$ -yl)acetate) $_2(NO_3)_2$ with uranyl nitrate as result of solvent extraction .	143
Figure (5)	linear increase in the extraction percentage of uranyl ion	144
Figure (6)	infrared spectrophotometry UO_2 (2-(3-hydroxypropyl)-4-methylphthalazin-1(2H)-one) $_1$ (NO $_3$)2:-with uranyl nitrate as result of solvent extraction	145
Figure (7)	the effect of increase of the aqueous / organic phase ratio on extraction percentage	146
Figure (8)	the effect of increase of the aqueous / organic phase ratio on extraction uranium by ppm	146
Figure (9)	the effect of increase of the aqueous phase to organic phase and the decline of the extraction percentage	148
Figure (10)	The decline of the extraction of uranium percentage by the increase of increase of the aqueous phase to organic phase ratio	149
Figure (11)	the increase of the extraction of uranium ppm by increase of increase of the aqueous phase to organic phase	149
Figure (12)	the decline of the extraction of uranium percentage by increase of increase of the aqueous phase to organic phase ratio	150
Figure (13)	Effect of aqueous /organic phase ratio on the extraction process 4-(3-chloro-4-methylphenyl) phthalazin-1(2H)-one solvent	152
Figure (14)	Effect of aqueous /organic phase ratio on the extraction process 2-(4-(3-chloro-4-methylphenyl)-1-oxophthalazin-2(1H)-yl)acetate solvent .	153
Figure (15)	the effect of temperature on the extraction process	155

Figure (16)	the effect of contact time on extraction process	156
Figure (17)	Effect of settling time on the extraction process.	157
Figure (18)	effect of aqueous / organic phase ratio on the stripping process	158
Figure (19)	Effect of mixing time on the stripping process	159
Figure (20)	Effect of temperature on the stripping process	160
Figure (21)	Effect of settling time on stripping process	161
Figure (22)	Infrared absorption data of uranyl peroxide.	162
Figure (23)	flow sheet for uranium recovery from hydrophilic residue of H_3PO_4 48% by the prepared reagent compounds .	165

LIST OF TABLES

	RESULTS AND DISCUSSION	Page
Table (1)	Effect of different concentration from solvent on Extraction of uranyl ion	140
Table (2)	Effect of different concentration from solvent on Extraction of uranyl ion	142
Table (3)	Effect of different concentration from solvent on Extraction of uranyl ion	144
Table (4)	Effect of aqueous / organic phase ratio solvent concentration on extraction process	146
Table (5)	The aqueous / organic phase ratio 5:1 solvent extraction percentage of uranium	147
Table (6)	Aqueous / organic phase ratio solvent concentration on extraction process	147
Table (7)	The aqueous / organic phase ratio 5:1 uranium extraction percentage to uranium extract 1:1 phase ratio	148
Table (8)): Aqueous / organic phase ratio solvent percentage on extraction process of phosphoric acid	149
Table (9)	Effect of aqueous / organic phase ratio solvent percentage on extraction process of phosphoric acid	150
Table (10)	uranium extraction to that 5:1 phase ratio to 1:1 phase ratio	151
Table (11)	(2) 4-(3-chloro-4-methylphenyl)phthalazin-1(2H)-one and (5) 2- (4-(3-chloro-4-methylphenyl)-1-oxophthalazin-2(1H)-yl)acetate in 1:1 phase ratio	151
Table (12)	(2) 4-(3-chloro-4-methylphenyl)phthalazin-1(2H)-one and (5) 2-(4-(3-chloro-4-methylphenyl)-1-oxophthalazin-2(1H)-yl)acetate in 1:5 phase ratio	151
Table (13)	Effect of aqueous /organic phase ratio on the extraction process 4-(3-chloro-4-methylphenyl) phthalazin-1(2H)-one solvent.	152
Table (14)	Effect of aqueous /organic phase ratio on the extraction process 2-(4-(3-chloro-4-methylphenyl)-1-oxophthalazin-2(1H)-yl)acetate solvent.	153
Table (15)	The effect of temperature on the extraction process	154
Table (16)	The effect of contact time on extraction process	155
Table (17)	Effect of settling time on the extraction process.	156
Table (18)	Effect of different reagent on stripping process	157
Table (19)	Effect of aqueous / organic phase ratio on the stripping process	158
Table (20)	Effect of mixing time on the stripping process	159
Table (21)	Effect of temperature on the stripping process	160
Table (22)	Effect of settling time on stripping process	161