

Cairo University
Faculty of Vet Medicine
Department of Virology

Efficacy of bivalent Baculovirus-expressed H5+ND inactivated vaccine against single and dual infection with Avian Influenza H5N1 and velogenic Newcastle disease virus in broiler commercial chickens

Thesis Submitted by Mahmoud Said Abdel Mohsen

B.V.Sc. (2003), CairoUniversity M.V.Sc "Virology" (2012), Cairo University

For The degree of Philosophy of Doctor in Veterinary Science Ph.D.V.Sci. (Virology)

Under supervision of Prof. Dr. Hussein Aly Hussein

Professor and head of Virology Department Faculty of Veterinary Medicine Cairo University

Dr. Abdel SatarArafa Mohamed

Cheifof Researcher in Reference Laboratory for Quality Control on Poultry production (RLQP), Animal Health Research institute (AHRI),Dokki,Giza

(2017)

Cairo University
Faculty of Veterinary Medicine
Department of Virology

Supervision sheet

Supervisors:

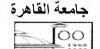
Prof. Dr. Hussein Aly Hussein

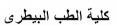
Professor and head of Virology Department

Faculty of Veterinary Medicine

Cairo University

Dr. Abdel SatarArafa Mohamed


Chief of Researcher


Reference Laboratory for Quality Control on Poultry production

Animal Health Research institute (AHRI), Dokki - Giza

قسم الفيروسات

Approval Sheet

This is to approve that Thesis presented by

Mahmoud Said Abdel Mohsen

For the degree of PhD. (Virology) has been approved by the examining committee

Prof. Dr. Gabr Fekry EL-Bagoury

Professor of Virology Faculty of Veterinary Medicine Moshtohour, Banha G. El. R

Prof. Dr. Ahmed Abd El-Ghani El-Sanousi

Professor of Virology Faculty of Veterinary Medicine, Cairo University Ahmed St-81

Prof. Dr-Abd El Satar A. Mohamed

Chief Researcher in reference
Laboratory for quality control on poultry production
Animal Health Research institute (Supervisor)

A. Arafa

Prof. Dr-Hussein Aly Hussein

Professor of Virology Head of the Department of Virology Faculty of Veterinary Medicine Cairo University (Supervisor)

2017

الرمز البريدى: 12211 فاكس: 35725240 العنوان: كلية الطب البيطرى- الجيزة- مصر تليفون: 3571309- 3571305

Acknowledgment

First and always, all thanks to Allah. Almighty, the most merciful and the compassionate for his guidance and sustenance made this study a reality and came to the light. I would like to express my deep appreciation and sincere gratitude to Prof. Dr. Hussein Ali Hussein, head LProfessor of Virology, Faculty of Veterinary Medicine, Cairo University. For his help are beyond my little words. Grateful thanks and sincere gratitude are extended to I'd like to express my deep appreciation and sincere gratitude and many thanks to Prof. Dr. Abd El Satar Arfa, chief researcher of poultry diseases Reference laboratory for veterinary quality control on poultry production, Animal Health Research Institute for his support, and great help in this study. Special thanks for Prof. Dr. Mohamed Khalifa Hassan & all staff members of Reference laboratory for veterinary quality control on poultry production, member of Sample Reception unit in Reference laboratory for veterinary quality control on poultry production, member of biotechnology unit in Reference laboratory for veterinary quality control on poultry production, especially Dr. Abd El Hafez Samir, Osama Ahmed L head of unit Dr. Ahmed Abdel Rahman and special thank Dr. M.Soliman, Saad Mousa and May Fathy for their effort with me to produce this type of work. This work was funded by International free trading (IFT) company as a sole agent for Boehringer Ingelheim. The funders had no conflict in this study in any technical design, data collection or analysis and decision to publication or preparation of this work.

Dedication

Dedicated to:

Soul of Prof Doctor | Ismail Reda

Father

Mother

Brothers

Wife

My son Mazen

and

My young daughter

jody

I hope that they will be happy, with my deep thanks for their support during the work.

Cairo University Faculty of Veterinary Medicine Department of Virology

Name	:Mahmoud said Abd El Mohsen Sayed
Nationality	: Egyptian
Date of birth	: 29/5/1981
Place of birth	:Cairo
Specification	: Virology
Thesis title	:Efficacy of bivalent inactivated baculovirus-expressed H5+ND inactivated vaccine against single and dual infection with avian influenza H5N1 and velogenic Newcastle disease virus in broiler commercial chickens.
Supervisors	: Prof. Dr. Hussein Aly Hussein Ahmed. : Prof. Dr. Abdel-Satar Arafa Mohamed.

Abstract:

This study aimed to evaluate the bivalent vaccine (recH5/NDV-Vaccine) for both Avian Influenza and Newcastle viruses. One hundred and eighty commercial Hubbard chicks were divided into nine groups, (20 each). Forty birds that vaccinated at 5th day of age by recH5/NDV-Vaccine (0.5ml per dose via subcutaneous route) were divided into 2 groups. In addition to eighty birds were vaccinated at 10days old with the same vaccine and route then subdivided into 4 groups. The rest birds were divided into 3 groups which kept none vaccinated as control groups. Birds were challenged either single and / or dual (with 3 days interval) at 21 day post vaccination with 10⁶ EID₅₀ dose by either the highly pathogenic avian influenza H5N1 Egyptian virus of clade 2.2.1.2/2015(HPAI-H5N1-CV) or velogenic NDV isolate of genotype VII (eNDV-GTVII) of Egyptian origin 100 ul per bird via the intra-nasal route. The results showed that the protection % for all groups vaccinated at 10 days old were 100 % expect one group which challenged with HPAI-H5N1-CV then eNDV-GTVII (90%), while groups vaccinated at 5day were 80% and 70%. Estimation of shedding % for both viruses showed that all groups not exceeded 30% shedding and extended for 5day post challenge (dpc) only but the quantity of virus shed in case of 5 day vaccinated groups were more than groups vaccinated at 10days old. When Re-isolation of the challenged viruses inoculated in Embryonated Chicken Egg (ECE) indicated that no virus shedding after 1st passage in case of groups vaccinated at 10days old. However, 5 day vaccinated groups were shed virus at percentage 20% &10% for H5 and only 10% for NDV. Generally, the antibody titer & histopathological scoring in groups vaccinated at 10days old were much better than 5 day vaccinated groups. Indeed, we do our recommend to use the vaccine at 10th day of age.

Keywords: Inactivated vaccine, recH5/NDV, dual infection, highly pathogenic avian influenza H5N1, clade 2.2.1.2, velogenic Newcastle disease virus, genotype VII, chickens, Egypt.

List of Contents

Content	Page
Abstract	
Introduction	1
Review of literature	5
a-Avian Influenza	5
2.a.1.Historical Background	5
2.a.1.1.The disease in Egypt	5
2.a.1.1.1.Non H5N1 AI in Egypt	5
2.a.1.1.2.Incursion and occurrence of H5N1 AI in Egypt	5
2.a.2. Etiology	6
2.a.2.1.Classification	6
2.a.2.2.Genomic organization of Influenza virus	7
2.a.2.3.Strain nomenclature	8
2.a.2.4. Morphology and structure of avian influenza virus	8
2.a.2.5.Avian Influenza virus genome & immunogenic proteins	9
2.a.2.5.1. Haemagglutinin (HA) gene	10
2.a.2.5.2.Structural overview of HA gene	10
2.a.2.5.2.1. HA1 domain	11
2.a.3.antigenic variation of A.I virus strain	12
2.a.3.1.Antigenic drift	12
2.a.3.2.Antigenic shift	12
2.a.4.Virus replication	13
2.a.5.clinical signs	14
2.a.6.P/M lesion	16
2.a.7.virus shedding	16
2.a.8.Immunity against Avian Influenza virus	20
2.a.8.1. innate immunity	21
2.a.8.2. Cellular immunity	21
2.a.8.3.Antigenic drift	23
2.a.9.Avian Influenza vaccine	24
2.a.9.1.Inactivated whole-virus vaccines	24
2.a.9.2.Reverse Genetics vaccine technology	24
2.a.9.2.1.gene-based vaccines	25
2.a.9.2.1.1.Virus Vector-Based Vaccines	25

2.a.9.2.1.2.Bacterial Vector-Based Vaccines			
2.a.9.2.1.3.DNA Vaccines			
2.a.9.2.1.4.Baculoviruses system vaccine			
<u>b-NewCastle Virus</u>	27		
2. b.1. Historical background	28		
2.b.1.1. History of ND worldwide	28		
2.b.1.2. History of ND in Egypt	28		
2.b.2.Causative agent	29		
2.b.2.1. Classification	29		
2.b.2.2.Genomic organization	30		
2.b.2.3 Biological and antigenic properties	30		
2.b.2.3.1. Haemagglutinin neuraminidase and			
Haemagglutination properties	30		
2.b.2.3.1.1. Haemagglutinin (HA)	30		
2.b.2.3.1.2. Haemagglutination properties	31		
2.b.2.3.1.3.Neuraminidase Activity	31		
2.b.2.3.2.Fusion protein structure and its function	31		
2.b.2.3.3. Matrix protein	32		
2.b.3. Virus replication	33		
2.b.4. Pathogenicity of NDV	34		
2.b.4.1. Assessment of pathogenicity (Pathogenicity tests)	35		
2.b.4.1.1. Mean Death Time (MDT)	35		
22.b.4.1.2. Intra venus pathogenicity index (IVPI)	36		
2.b.4.1.3 . Intra Cerebral pathogenicity index (ICPI)	36		
2.b.5. Clinical signs	36		
2.b.6. PM lesions	37		
2.b.7.Viral shedding	37		
2.b.8.Immunity of Newcastle virus	38		
2.b.8.1.Humoral immunity against NDV	39		
2.b.8.2.Cellular immunity induced by NDV	40		
2.b.9.NDV vaccine	41		
2.b.9.1. Live vaccines of NDV	42		
2.b.9.2. Conventional inactivated vaccines	43		
2.b.9.3. Emergency vaccination	43		
2.b.9.4.Vaccine based on biotechnology	43		
2.b.9.4.1.vector vaccines	43		
2.b.9.4.2. subunit vaccines	44		
2. b.9.4.3. DNA vaccines			
2.c.Baculoviruses as expression vectors	45		
Materials and Methods	46		
Materials	52		

Methods	50
Results	59
Discussion	72
Summary	80
References	82
Arabic summary	