

EFFECT OF ELEVATED TEMPERATURE ON PUNCHING STRENGTH OF FLAT SLABS IN COMPRESSION SIDE

By

Peter Kamil Fakhry Auob

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Structural Engineering

EFFECT OF ELEVATED TEMPERATURE ON PUNCHING STRENGTH OF FLAT SLABS IN COMPRESSION SIDE

By Peter Kamil Fakhry Auob

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Structural Engineering

Under the Supervision of

Prof. Dr. Mostafa Fouad El Kafrawy

Prof. Dr. Said Aly Mohamed Taher

Prof. of Reinforced Concrete Structures Structural Engineering Department Faculty of Engineering, Cairo University Prof. of Reinforced Concrete Structures Reinforced Concrete Research Institute Housing & Building Research Center

EFFECT OF ELEVATED TEMPERATURE ON PUNCHING STRENGTH OF FLAT SLABS IN COMPRESSION SIDE

By **Peter Kamil Fakhry Auob**

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Structural Engineering

Approved by the Examining Committee

Prof. Dr. Mostafa Fouad El Kafrawy, Thesis Main Advisor

Prof. of Reinforced Concrete Structures Faculty of Engineering, Cairo University

Prof. Dr. Said Aly Mohamed Taher, Member

Prof. of Reinforced Concrete Structures Housing & Building Research Center

Prof. Dr. Mohamed Talat Mostafa, Internal Examiner

Prof. of Reinforced Concrete Structures Faculty of Engineering, Cairo University

Prof. Dr. Hatem Hamdy Ghieth, External Examiner

Prof. of Reinforced Concrete Structures Housing & Building Research Center

> FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2016

Engineer's Name: Peter Kamil Fakhry Auob

Date of Birth: 30 / 6 / 1987 **Nationality:** Egyptian

E-mail: epeterkamil@yahoo.com

Phone: 01006483648

Address: 7 Neseem Asad st. Shoubra, Cairo

Registration Date:1 / 10 / 2011Awarding Date:..../..../ 2016Degree:Master of ScienceDepartment:Structural Engineering

Supervisors:

Prof. Dr. Mostafa Fouad El Kafrawy Prof. Dr. Said Aly Mohamed Taher Housing & Building Research Center

Examiners:

Prof. Dr. Mostafa Fouad El Kafrawy (Thesis main advisor)

Prof. Dr. Said Aly Mohamed Taher (Member)

Housing & Building Research Center

Prof. Dr. Mohamed Talat Mostafa (Internal examiner)
Prof. Dr. Hatem Hamdy Ghieth (External examiner)

Housing & Building Research Center

Title of Thesis:

Effect of elevated temperature on punching strength of flat slabs in compression side

Key Words:

Punching shear; Fire effect; Flat slab; Compressive test; Effect of cooling on concrete

Summary:

An experimental investigation was carried out on normal strength concrete flat slab to study punching strength under the effect of elevated temperature. The experimental investigation conducted on 10 slab-column connection specimens with 8 specimens have been exposed to high temperature for different durations with different concrete covers and different cooling types are represented in the present investigation. The slabs were subjected to elevated temperature 600° c from the electrical furnace, these durations are 2.0 and 3.0 hours.

Acknowledgments

First of all, thanks to God for his grace and mercy, and for giving me the effort to complete this work.

I would like to express my sincere gratitude to my dear supervisors Prof. Dr. Mostafa Fouad El Kafrawy and Prof. Dr. Said Aly Mohamed Taher. I really appreciate your valuable and enriching feedback. Thanks a lot for your effort in advising me on this Thesis. I can't thank you enough for inspiring me to continue in the right direction. I really appreciate your advice, support and for being so generous with me.

I would like to thank my beloved parents, my family and my wife for their encouragement who are so supportive to me throughout my life.

TABLE OFCONTENTS

		Page
ACI	KNOWLEDGMENT	I
TAI	BLE OF CONTENTS	II
LIS	T OF TABLES	VI
LIS	T OF FIGURES	VII
ABS	STRACT	XI
CH.	APTER (1): INTRODUCTION	
1.1	General	1
1.2	Objectives	2
1.3	Scope and contents	2
CH.	APTER (2): Background and Literature Review	
2.1	Introduction	4
2.2	Slab Column Connections (Flat Slab System)	4
2.3	Mechanism of Punching Failure in Slab-Column Connections	5
2.4	Punching Shear in the Egyptian Code	7
2.5	Punching Shear in the American Code ACI 318-2002	8
2.6	Punching Shear in the Canadian Code CSA A23.3-94	9
2-7	Punching Shear in the British Code BS 8110	10
2-8	Punching Shear in the European Code CEB-FIP 90	11
2-9	Previous Experimental Investigation on Punching	12
	The Effect of High Temperature on Reinforced Concrete	
	ments	16
	2.10.1The Effect of High Temperature on Cement Paste	17
	2.10.2 The Effect of High Temperature on Aggregate	17
	2.10.3 The Effect of High Temperature on Steel	17
	Time Temperature Curve	18
2-12	2 Thermal Properties of Concrete	19

2-12-1 Thermal Conductivity (λc)	20		
2-12-2 Specific Heat (cc)	20		
2-12-3 Thermal Expansion	21		
2-13 The Effect of High Temperature on Material Characteristics of Reinforcement Concrete			
2-13-1 Effect of High Temperature on Concrete Stress / Strain Relationships	22		
2-13-2 Effect of High Temperature on Bond Strength of Concrete	23		
2-13-3 Effect of High Temperature on Strength of Concrete	24		
2-13-4 Effect of High Temperature on Strength of Steel	25		
2-14 Previous Experimental Investigation on fire	26		
CHAPTER(3): Material and Experimental Program			
3.1 Introduction	29		
3.2 Description of Test Specimens	29		
3-3 Specimens Variables	30		
3-4 Characteristics of Materials Used in Concrete	33		
3-4-1 Aggregates	33		
3-4-1-1 Fine Aggregates (F.A)	33		
3-4-1-2 Coarse Aggregates (C.A)	34		
3-4-2 Cement (C)	36		
3-4-3 Water	36		
3-4-4 Steel Reinforcement	37		
3-5 Mix Design	39		
3-6 Casting and Curing	41		
3-7 Cubes Tasting	44		
3-8 Temperature work	46		
3-8-1 The electrical Furnace	46		
3-8-2 System of Temperature	47		
3-8-2-1 Control unit of the furnace	47		
3-8-2-1-1 Thermal Couples	47		
3-8-2-1-2 Sensor	47		

3-9 Testing	49
3-9-1 Reaction Frame and Test Setup	51
3-9-1-1 Reaction Frame	51
3-9-1-1-1 The Double Portal Frame	51
3-9-1-2 Test Setup	51
3-9-2 Measurement and Loading Control System	51
3-9-2-1 Control System	51
3-9-2-2 Measurement	53
3-10 Testing Procedure of Slab Models	53
CHAPTER (4): Experimental Results, Analysis and Discussion	
4.1 Introduction	54
4-2 General Behavior	55
4-3 mode of failure	57
4-4 Test Results	57
4-4-1 Effect of High Temperature on Slab Strength	57
4-4-1-1 Effect of High Temperature on Slab Strength for the	
Control Group Slab	57
4-4-1-2 Effect of High Temperature on Slab Strength for the	
First Group Slab	57
4-4-1-3 Effect of High Temperature on Slab Strength for the	
Second Group Slab	58
4.4.2 Deflection	58
4-4-2-1 Deflection of the Control Group Slabs	58
4-4-2-2 Deflection of the First Group Slabs	58
4-4-2-3 Deflection of the Second Group Slabs	59
4-4-3 Effect of High Temperature on Steel Bars	59
4-5 Load-Deflection Behavior	70
4-6 Crack Pattern	75
4-6-1 Cracks of the Control Group Slabs	76

4-6-2 Cracks of the First Group Slabs	76
4-6-3 Cracks of the second Group Slabs	76
CHAPTER (5): Summary And Conclusion	
5-1 Summary	85
5-2 Conclusions	85
REFRENCES	87

LIST OF TABLES

	Page
Tabal 3-1 : Classification of Specimens	31
Tabal 3-2 : Properties of Sand	34
Tabal 3-3: The results of sieve analysis (sand)	34
Tabal 3-4 : Properties of Dolomite	35
Tabal 3-5: The results of sieve analysis (dolomite)	35
Tabal 3-6: Mechanical Properties of Cement (52)	36
Tabal 3-7: Properties of reinforced steel	39
Tabal 3-8: Properties of concrete mix design	39
Tabal 3-9 : Cube compressive strength	45
Table (4-1): Test results of all specimens	60
Table (4-2): Deflections of all specimens	60
Table (4-3): Test results and observation of punching shear shape and size	77

LIST OF FIGURE

	Page
Figure(2-1) :Typical Punching Failure	6
Figure(2-2) :Punching failure mechanism	6
Figure(2-3):Punching failure in slab-column connection	7
Figure(2-4): Shear Critical for Different Codes	10
Figure(2-5): Steel-strain relationship at high temperature	18
Figure(2-6):Standard Time-Temperature Curves (Buchanan.[26])	19
Figure(2-7): Concrete stress-strain relationship qt high temperature	22
Figure(2-8) The effect of temperature on compressive strength	24
Figure(2-9) Variation of steel strength-yield stress with temperature	25
Figure(3-1): The dimensions of a typical specimen	30
Figure(3-2) :Experimental Program	32
Figure(3-3):The natural sand	33
Figure(3-4) :The crushed dolomite	35
Figure(3-5): The reinforcement details for all specimens	37
Figure(3-6): The specimen reinforcement details	38
Figure(3-7): The specimen reinforcement details	38
Figure(3-8) :Making concrete cubes	40
Figure(3-9) :The concrete cubes	40
Figure(3-10) :The concrete mixer	41
Figure(3-11):The specimens steel reinforcement	42
Figure(3-12): Concrete casting after mixing	42
Figure(3-13): The mechanical vibrator to compact the concrete	43
Figure(3-14): Specimens during curing	43
Figure(3-15): Making concrete cubes.	44
Figure(3-16): Testing concrete cubes	45
Figure(3-17) : Electric Furnace	46
Figure(3-18): Thermocouples connected to steel	47
Figure(3-19): Thermocouples connected to the data logger	48

Figure(3-20): The data logger	48
Figure(3-21): The sensor and thermocouples	49
Figure(3-22): Test set up	50
Figure(3-23): Full test set up	50
Figure(3-24): Location of vertical LVDT	52 53 55 56
Figure(4-3): The specimen S3 has been cooling by water	56
Figure(4-4): Initial crack load and ultimate load for first group	61
Figure(4-5) :Initial crack load and ultimate load for second group	61
slabslab	62
Figure(4-7-a): Deflection profile at different locations for specimen S9.	62
Figure(4-7-b) :Deflection profile at different locations for specimen S10	63
Figure(4-8-a) :Deflection profile at different locations for specimen S1	63
Figure(4-8-b) :Deflection profile at different locations for specimen S2	64
Figure(4-8-c) :Deflection profile at different locations for specimen S3	64
Figure(4-8-d) :Deflection profile at different locations for specimen S4	65
Figure(4-9-a) :Deflection profile at different locations for specimen S5	65
Figure(4-9-b) :Deflection profile at different locations for specimen S6	66
Figure(4-9-c) :Deflection profile at different locations for specimen S7	66
Figure(4-9-d) :Deflection profile at different locations for specimen S8	67
Figure(4-10) :Steel bar temperature during 2 hr exposing to high temperature.	67
Figure(4-11) :Steel bar temperature during 3 hr exposing to high temperature	68

Figure(4-12) :Steel bars temperature at avg.S1&S2 exposing to high temperature	68
Figure(4-13) :Steel bars temperature at avg.S5&S7 exposing to high temperature	69
Figure(4-14) :Steel bars temperature at avg.S2&S4 exposing to high temperature	69
Figure(4-15) :Steel bars temperature at avg.S2&S4 exposing to high temperature.	70
Figure(4-16) :Load-Central deflection curve for control group specimens.	72
Figure(4-17) :Load-Central deflection curve for first group specimens and S9	72
Figure(4-18) :Load-Central deflection curve for second group specimens and S10	73
Figure(4-19) :Load-Central deflection curve for specimens exposed to high temperature for 2hr	73
Figure(4-20) :Load-Central deflection curve for specimens exposed to high temperature for 3hr	74
Figure(4-21) :Load-Central deflection curve for specimens cooling by air	74
Figure(4-22) :Load-Central deflection curve for specimens cooling by water	75
Figure(4-23) :Cracking pattern for Specimen S9	77
Figure(4-24) :Cracking pattern for Specimen S10	78
Figure(4-25): Column penetrates the slab S9	78
Figure(4-26) :Cracking pattern for Specimen S1	79
Figure(4-27) :Cracking pattern for Specimen S2	79
Figure(4-28) :Cracking pattern for Specimen S3	80
Figure(4-29) :Cracking pattern for Specimen S4	80
Figure(4-30): Column penetrates the slab S1	81
Figure(4-31): Column penetrates the slab S4	81
Figure(4-32) :Cracking pattern for Specimen S5	82
Figure(4-33) :Cracking pattern for Specimen S6	82
Figure(4-34): Cracking pattern for Specimen S7	83
Figure(4-35): Cracking pattern for Specimen S8	83
Figure(4-36): Column penetrates the slab S5	84

Figure(4-37):	Column	penetrates	the	slab	S6	84
15010		, .	Column	penenaces	UIIC	Diac	50	α 4

ABSTRACT

Reinforced concrete is considered one of the most commonly used building structures in Egypt and the Arab region. However, its cost less than other building structures, such as metal structures. Concrete can be formed to serve the various architectural designs and with high security. Fire is considered one of the serious causes of damage and cause collapse of reinforced concrete structures. Many collapse cases took place in recent years due to fire all over the world. The effect of fire on structural safety is dependent on fire temperature, duration and fire fighting technique. The flat slab construction of systems most commonly used in Egypt and the problems faced by the construction of this system is the possibility of punching-shear for slabs and concrete, especially when exposed to fire with less resistance of reinforced concrete which would lead to the occurrence of punching shear without warning. In this research work the effect of the high temperature on the punching shear of flat slabs is investigated. Experimental study was carried out to examine the effect of high temperature on the behaviour of slabcolumn connections. In this research the effect of heat duration and thickness of concrete cover were studied. Two methods of cooling the slab were also tested.