Correlation between microalbuminuria & carotid intima media thickness in diabetic patients with acute coronary syndrome

Thesis

Submitted for Partial Fulfillment of Master Degree in Cardiology

Presented by

Amir Ahmed Mossa

MBBCH

Supervisors

Prof. Dr . Sameh Mohamed Shaheen

Professor of Cardiology

Faculty of Medicine – Ain Shams University

Dr . Iman Esmat Sayed Ibrahim

Lecturer of Cardiology

Faculty of Medicine – Ain Shams University

Dr. Amira Ibrahim Hamed

Lecturer of Clinical Pathology

Faculty of Medicine – Ain Shams University

Faculty of Medicine Ain Shams University

Acknowledgement

I would like to express my deepest thanks and profound gratitude to **Professor Dr. Sameh Shaheen**. Professor of cardiology, Ain Shams University.

It was such agreet honor to work under his kind guidance. To him, I owe much more than I could express and much less than I could repay except in part by the satisfaction of seeing this study comes true.

Great thanks are also to **Dr. Iman Ismat** Lecturer of cardiology, Ain Shams University for sharing her expertise and supervision.

Next I must extend my thanks to **Dr. Amira Ibrahim** Lecturer of clinical pathology ,Ain Shams University ,for her continuous help to bear the responsibility towards this study.

I would like also to thank **Dr. Wael Kilany** Lecturer of cardiology, Ain Shams University for his continous help, care and support throughout this work.

I cannont forget the help of the medical stuff and nursing in our cardiology department for their cooperation in the practical part of this work.

I would also like to record my thanks and sincere gratitude to my family for their great help and support throughout the work.

Aim of the work

The aim of this study is to investigate the association between microalbuminuria & carotid intima-media thickness in diabetic patients presenting with acute coronary syndrome.

Table of contents

Introduction	
Aim of the work	
Review of literature	
• Chapter 1 : Coronary artery disease in diabetes	5
Chapter 2 : Carotid Intima Media Thickness	20
Chapter 3 : Microalbuminuria	36
Patients and methods	
Results	
Discussion	
Summary	
Conclusion	
Recommendations	
Appendices	
References	

List of abbreviations

ACC	American Colleague of Cardiology		
AHA			
	American Heart Association		
AMI	Acute myocardial infarction		
ATP	Adult Treatment Panel 111		
AusDiab	Australian Diabetes, Obesity, and Lifestyle Study		
CAD	Coronary artery disease		
CCA	Common carotid artery		
CCU	Cardiac care unite		
CIMT	Carotid intima-media thickness		
CRP	C-reactive protein		
CVD	Cardio vascular disease		
DM	Diabetes mellitus		
DKA	Diabetic ketoacidosis		
ECA	External carotid artery		
ECG	Electrocardiogram		
eNOS	Endothelial Nitric oxide synthase		
EPIC	European Prospective Investigation into Cancer		
FFA	Free fatty acids		
HDL	high density lipoprotein		
НОРЕ	Heart Outcomes Prevention Evaluation		
HUNT	Nord-Trøndelag Health Study		
ICA	Internal carotid artery		
ICAM	Intercellular adhesion molecule		

IDDM	Insulin dependent diabetes mellitus		
IHD	Ischemic heart disease		
IMT	Intima-media thickness		
IRAS	Insulin Resistance Atherosclerosis Study		
IRMA-2	Irbesartan in Patients with Type 2 Diabetes and Microalbuminuria study		
IR	Insulin resistance		
LDL	Low density lipoprotein		
LVH	Left ventricular hypertrophy		
LIFE	Losartan Intervention for Endpoint Reduction trial		
MONICA	Monitoring of Trends and Determinants in Cardio- vascular Disease		
NCEP	National Cholesterol Education Program		
NIDDM	Non insulin dependent diabetes mellitus		
Non STEMI	Non ST elevation myocardial infarction		
NOS	Nitric oxide synthase		
PAI-1	Tissue plasminogen activator inhibitor type 1		
PREVEND- IT	PREVEND Prevention of Renal and Vascular Endstage Disease Intervention Trial		
SI	Insulin sensitivity		
STEMI	ST elevation myocardial infarction		
tHey	Total homocysteine		
tPA	Tissue plasminogen activator		
VCAM	Vascular cell adhesion molecule		
VLDL	Very low density lipoprotein		

List of tables

Table (1)	Risk factors for coronary artery disease in diabetes
Table (2)	Various endothelial abnormalities associated with diabetes mellitus and insulin resistance
Table (3)	Factors contributing to a prothrombotic state in diabetes
Table (4)	Correlation between micro-albuminuria and age
Table (5)	Correlation between micro-albuminuria and gender
Table (6)	Correlation between micro-albuminuria and hypertention
Table (7)	Correlation between micro-albuminuria and smoking
Table (8)	Correlation between micro-albuminuria and dyslipidemia
Table (9)	Correlation between micro-albuminuria and family history
Table (10)	Correlation between micro-albuminuria and plaques
Table (11)	Correlation between micro-albuminuria and type of ischemia
Table (12)	Correlation between carotid IMT and age
Table (13)	Correlation between carotid IMT and gender
Table (14)	Correlation between carotid IMT and hypertention
Table (15)	Correlation between carotid IMT and smoking

Table (16)	Correlation between carotid IMT and dyslipidemia
Table (17)	Correlation between carotid IMT and family history
Table (18)	Correlation between carotid IMT and type of ischemia
Table (19)	Correlation between carotid IMT and micro-albuminuria

List of figures

Figure (1)	Schematic representation of the interactions between inflammation, IR and atherosclerosis		
Figure (2)	Schematic diagram showing carotid anatomy		
Figure (3)	Schematic diagram showing arterial wall layers		
Figure (4)	Scheme for vascular remodeling		
Figure (5)	Schematic diagram showing carotid IMT measured by ultrasonography		
Figure (6)	Correlation between micro-albuminuria and smoking		
Figure (7)	Correlation between CIMT and hypertention		
Figure (8)	Mean Lt CIMT in microalbuminuric and normoalbuminuric subjects		
Figure (9)	Mean Rt CIMT in microalbuminuric and normoalbuminuric subjects		
Figure (10)	Mean CIMT in microalbuminuric and normoalbuminuric subjects		
Figure (11)	Number of patients with increased CIMT >0.8 mm		

Introduction

In view of the high morbidity and mortality associated with ischemic heart disease (IHD), the estimation of individual cardio-vascular risk over and above the assessment of classic risk factors such as age , hypercholesterolemia and hypertention is an important prerequisite for focusing preventive and therapeutic measures.⁽¹⁾

Microalbuminuria (a slightly elevated albumin excretion in urine) is considered a novel athero- sclerotic risk factor, both in diabetic subjects and in general population. (2)

Microalbuminuria was originally defined among patients with diabetes mellitus as 20 - 200 microgram/minute and was associated with increased risk of chronic renal failure. later it was shown that microalbuminuria among patients with diabetes reflects systemic vascular damage and increased risk of coronary heart disease independently of renal function. (3)

Several studies have demonstrated an association between slightly increased urinary albumin excretion and cardio-vascular risk factors, even in the general population.

in the Copenhagen city heart study healthy individuals with urinary albumin excretion level >90th percentil (>7 microgram/minute) were characterized by higher blood pressures and lower plasma concentration of apo lipoprotein A-1 and HDL cholesterol .Furthermore, they had a generalised transvascular leakiness for albumin.These observations suggest that individuals with slightly increased urinary albumin excretion may be at increased risk for the subsequent development of IHD.⁽⁴⁾

The pathogenic mechanisms leading to increased risk are still unknown but microalbuminuria has been suggested as a marker of endothelial dysfunction and hyperpermeability to macromolecules which occurs early in atherogenesis. (4)

Carotid intima media thickness assessed non invasively by B- mode ultrasound has been recently shown to be an early marker for athero-sclerosis. (2)

Assessment of Carotid IMT is a simple non invasive and reproducible clinical tool to evaluate athero-sclerosis and predict CAD in humans.⁽⁵⁾

Previous studies have shown cross-sectional associations between common carotid artery intima-media thickness and cardio-vascular risk factors, the prevalence of cardio-vascular disease and the involvement of other arterial beds with atherosclerosis. (6)

Aim of the work

The aim of this study is to investigate the association between microalbuminuria& carotid intima-media thickness in diabetic patients presenting with acute coronary syndrome.