

VERTICAL AND HORIZONTAL VEGETATION AS A TOOL TO INCREASE ECO-SKYSCRAPERS ENVIROMENTAL EFFICIENCY.

CASE STUDY: RESIDENTIAL BUILDINGS

By

REEM MOHAMED REDA EL-TAHER

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Architecture-Building Technology

VERTICAL AND HORIZONTAL VEGETATION AS A TOOL TO INCREASE ECO-SKYSCRAPERS ENVIROMENTAL EFFICIENCY

CASE STUDY: RESIDENTIAL BUILDINGS

By REEM MOHAMED REDA EL-TAHER

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Architecture-Building Technology

Under the Supervision of

Prof. Dr. Hisham Huessin Sameh

Dr. Hosam Mohammed Abd-el Aziz

Professor of Building Technology
Department of Architecture
Faculty of Engineering, Cairo University

Dr. Hosam Mohammed Abd-el Aziz

Doctor of Architecture
Modern Academy for Engineering and
Technology

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT

VERTICAL AND HORIZONTAL VEGETATION AS A TOOL TO INCREASE ECO-SKYSCRAPERS ENVIROMENTAL EFFICIENCY

CASE STUDY: RESIDENTIAL BUILDINGS

BY REEM MOHAMED REDA EL-TAHER

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in

Architecture-Building Technology

Approved by the Examining Committee	
Prof. Dr. Mostafa Abd- El Hafiz El-Ahwal,	External Examiner
Prof. Dr. Medhat Abd El Maged El-shazly,	Internal Examiner
Prof. Dr. Hisham Huessin Sameh,	Thesis Main Advisor
Dr. Hosam Mohamed Abd El-Aziz,	Member

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT

Engineer: Reem Mohamed Reda El Taher

Date of Birth: 24 /3 /1983. Nationality: Egyptian.

E-mail: reem305.rm@gmail.com.

Phone.: 01064070008

Address: 10 elzahawy street.nasr city

Registration Date: 1/3 /2011

Awarding Date : / /

Degree : Master of Science.

Department : Architecture Engineering.

Supervisors: Prof. Dr. Hisham Huessin Sameh (main Supervisor)

Dr. Hosam Mohammed Abd El Aziz(Supervisor)

Examiners: Prof. Dr Mostafa Abd El-Hafiz El-Ahwal (External Examiner) Professor& Head of Department of Architecture and Urban Planning, Faculty of Engineering Suez Canal University

Prof. Dr. Medhat Abd El Maged El-shazly (Internal Examiner)

Prof.Dr . Hisham Huessin Sameh (main Supervisor) Dr. Hosam Mohammed Abd El Aziz(Supervisor)

Title of Thesis: VERTICAL AND HORIZONTAL VEGETATION AS A TOOL TO INCREASE ECO-SKYSCRAPERS ENVIRONMENTAL EFFICIENCY **Key Words:**

Vertical greening systems, Green roofs, vertical farming, ecology, ecoskysrapers, energy efficiency and atmosphere, water efficiency.

Summary:

Now the world change, especially after the impact of major oil crises in 1973/1979. This research is trying to bring a new way of thinking to understand the need of incorporating nature in the design as one of the aspects and new technologies for eco-design policy, which reduce the negative impacts of buildings and increase the environmental efficiency. By clarifying importance of integrating systems of vertical and horizontal vegetation into eco-skyscrapers, and learn how to develop green spaces in buildings.

Acknowledgments

First I thank God, the glorious and compassionate, for helping me and giving me the strength to accomplish this work.

My appreciation and gratitude goes then to Prof. Dr. Hisham Sameh for his constant support and intellectual advice. I also thank Dr. Hosam Abd El Aziz for his continuous encouragement, guidance and support.

This opportunity is valuable to express my gratitude to everyone who supported me all the way through. A special thanks to my family. Words cannot express how grateful I am to mom, husband and my kind daughter (Reem) for all of the sacrifices that you've made on my behalf ,and I am very thankful for my little daughter (Qamar) for being my blessing. Without your guidance and persistent support it would not have been possible.

Last but not least, my deepest appreciation to my beloved father who have supported me throughout the entire process. Thank you my father.

List of Contents

Contents	No.
ACKNOWLEDGMENTS	i
LIST OF CONTENTS	ii
LIST OF FIGURE	viii
LIST OF TABLE	XX
ABSTRACT	xxi
INTRODUCTION	xxii
	XXII
PART (I): THEORETICAL APPROACH	
Chapter (1): The Rise of Eco-Skyscraper	1
1.1 Introduction	2
1.2 What is a Skyscraper?	3
1.2.1 General Definitions	3
1.2.1.1 Definitions Based on Building Structure	4
1.2.1.2 Definitions Based on Height and Number of Stories	4
1.3 Evaluation of skyscrapers	5
1.3.1 The First Energy Generation: 1885 to 1916 Zoning Law	5
1.3.2 The Second Energy Generation: (1916-1951)	6
1.3.3 The Third Energy Generation: (1951-1973)	8
1.3.4 The Fourth Energy Generation	10
1.3.5 The Fifth Energy Generation	12
1.4 Early eco-skyscrapers	13
1.4.1 The price tower, Bartlesville, ok	14
1.4.2 Menara mesiniaga (IBM) TOWER, subang jaya, malysia	14
1.4.3 The commerzbank headquarters building	16
1.5 Conclusion	18
Chapter (2): Eco – Skyscrapers Design Approach	19
2.1 Introduction	20
2.2 What Is Eco Design?	20
2.3 Ecological Design Architectural Basis 2.3.1 Site	22
2.3.1 Site 2.3.2 Design	22 23
2.3.3 Materials	
2.3.4 Energy efficiency	25 26
2.3.5 Water conservation	20 27
2.3.6 Air Quality	27
2.3.7 Pollution and Waste Management	28
2.3.8 Vegetation	29
2.4 Management And Operations	30
2.5 Designing Operational Systems	30
2.5.1 Mixed Mode Design	30
2.5.2 Passive Mode Design	31
2.5.3 Full Mode Design	31

Contents	No
2.5.4 Productive Mode Design	31
2.5.5 Composite Mode Design	31
2.6 Eco-Skyscrapers Passive Mode "ecological" Strategies	32
2.6.1 Architectural Composition strategies	32
2.6.2 Solar Sun Path	33
2.6.3 Environmental Conservation	34
2.6.4 Energy Conservation	35
2.7 Conclusion	36
Chapter (3): Vegetation Life Potential Benefits	37
3.1 Potential benefits of vegetation	38
3.2 Potential Benefits of horizontal vegetation	39
3.2.1 Environmental Benefits	39
3.2.1.1 Storm Water Management	39
3.2.1.2 Air Quality Improvements	44
3.2.1.3 Urban Heat Island	45
3.2.1.4 Carbon Sequestration Capabilities	46
3.2.1.5 Increases In Urban Biodiversity	47
3.2.2 Community and Social Benefits	48
3.2.2.1 Aesthetic And Rehabilitative Benefits	48
3.2.2.2 Urban Agriculture	49
3.2.2.3 Sound Insulation	49
3.2.3 Economic Benefits	50
3.2.3.1 Energy Efficiency	50
3.2.3.1.1 Reducing the energy budget of a building	51
3.2.3.1.2 Effect Of Soil Moisture Content On Energy Savings	53
3.3 Potential Benefits of vertical vegetation	55
3.3.1 Environmental Benefits	55
3.3.1.1 Grey water purification	55
3.3.1.2 Air quality improvements	57
3.3.1.3 Urban heat island	58
3.3.1.4 Increases In Urban Biodiversity	61
3.3.2 Community and Social Benefits	62
3.3.2.1 Sound Insulation	62
3.3.3 Economic Benefits	63
3.3.3.1 Energy Efficiency	63
3.3.3.1.1 Cooling effect	63
3.3.3.1.2 Insulation effect	65
3.3.3.2 Building protection	66
3.3.3.2.1 Protection against the temperature difference	66
3.3.3.2.2 Protection against the rain	67
3.4 Conclusion	68

Contents	No.
PART (II): ANALYTICAL APPROACH	
	F 1
Chapter (4): Provisions of Horizontal and Vertical Vegetation Life	71
4.1 Introduction	72 72
4.1.1 Horizontal Vegetation	72 72
4.1.2 Horizontal Vegetation components	72 72
4.1.2.1 Waterproofing Membrane	73
4.1.2.2 Root Barrier	76
4.1.2.3 Protection Board	77 77
4.1.2.4 Insulation	77
4.1.2.5 Drainage	79
4.1.2.6 Filter- Fabric	88
4.1.2.7 Growing Medium	89
4.1.3 Irrigation	91
4.2 Horizontal vegetation systems	95
4.2.1 Complete systems (Built-in-place)	96
4.2.2 Modular systems	96
4.2.3 Pre-cultivated vegetation blankets	98
4.3 Methods of greening	99
4.3.1 Extensive method	99
4.3.2 Intensive method	99
4.4 Design & Implementation Considerations	101
4.4.1 Horizontal vegetation Conditions And Suitability For Greening	101
4.4.1.1 Function /use	101
4.4.1.2 Site selection	101
4.4.2 Horizontal vegetation Environmental Conditions For Greening	101
4.4.2.1 Temperature	101
4.4.2.2 Moisture	101
4.4.2.3 Wind	102
4.4.2.4 Solar radiation	102
4.4.3 Horizontal plane Structure And Bedding Stability	102
4.4.3.1 Structure And Design Load	102
4.4.3.2 Vegetated plane Slope	103
4.4.3.3 Parapet Design And Protection Against Falls	104
4.5 Vertical vegetation	104
4.6 Vertical vegetation systems	105
4.6.1 Green Facade Systems	106
4.6.1.1 Two-Dimensional Systems	106
4.6.1.1.1 Cable / Wire Rope Net	106
4.6.1.2 Three-Dimensional Systems	107
4.6.1.2.1 Modular Trellis Panel System	108
4.6.1.2.2 Free Standing Structures	109
4.6.2 Living Walls	109
4.6.2.1 Passive Living Walls	110
4.6.2.1.1 Modular Living Walls (SOIL CELLS)	110
4.6.2.1.2 Hydroponics (Vegetated Mat Wall)	112
4.6.2.2 Active living walls	114
4.6.2.2.1 How to achieve active living wall	114

Contents	No.
4.6.2.2.2 Biofiltration	115
4.7 Design & Implementation Considerations	116
4.7.1 Vertical Vegetation Environmental Conditions	116
4.7.1.1 Wind effect	116
4.7.1.2 Orientation	118
4.7.2 Vertical Vegetation Structure and Design Considerations	120
4.7.2.1 Site considerations	120
4.7.2.2 Architectural considerations	120
4.7.2.3 Concept Considerations	121
4.7.3 Vertical vegetation Conditions and Suitability for Greening	121
4.7.3.1 Waterproofing	121
4.7.3.2 Drainage	122
4.7.3.3 Solar radiation	122
4.7.3.4 Growth Medium	123
4.7.3.5 Irrigation	124
4.8 Vegetation / plants	126
4.8.1 Plants Substrate Depth	127
4.8.2 Plants growth cycle	130
4.8.3 Visual \ foliage classification	131
4.9 Plant selection and establishment	132
4.9.1 Horizontal vegetation plant selection	132
4.9.2 Vertical Vegetation Plant Selection	134
4.9.2.1 living wall	134
4.9.2.2 Green facacde	135
4.10 Conclusion	137
PART (III): PRACTICAL APPROACH Chapter (5): Cose Studies And Applysis	120
Chapter (5): Case Studies And Analysis 5.1 Introduction	139 140
5.2 Criteria of Choosing Analytical Case Study	140 140
5.3 Objectives of The Analytical Part	140 140
5.4 Methodology of The Analytical Part	140 141
5.5 Case Study (1): one central park, sydney, australia,2013	141
5.5.1 Case Study Analysis	143
5.5.1.1 Project Basic Information	143
5.5.1.2 Project Description	143 144
5.5.1.3 Design Challenge	144
5.5.2 Vegetation Approach Analysis	144
5.5.2.1 Vegetation Approach used	144
5.5.2.2 Design planting concept	145
5.5.2.3 Plant species	146
5.5.2.4 Preparation of plants	147
5.5.2.5 Growth medium	147
5.5.2.6 Irrigation	147
5.5.2.7 Construction	148
5.5.2.8 Maintenance	151
5.5.3 Eco- Design Innovations	155
5.5.4 Results Achieved	156
5.5.4.1 Energy efficiency and atmosphere	156

Contents	No.
5.5.4.2 Water efficiency	157
5.5.4.3 Indoor Air Quality	157
5.5.4.4 Site Ecology	159
5.5.5 Conclusion	159
5.6 Case Study (2): Bosco Verticale, Milan, Italy, June 2013	165
5.6.1 Case Study Analysis	165
5.6.1.1 Project Basic Information	165
5.6.1.2 Project Description	166
5.6.1.3 Design Challenge	166
5.6.2 Vegetation Approach Analysis	166
5.6.2.1 Vegetation Approach used	166
5.6.2.2 Design planting concept	167
5.6.2.3 Plant species	168
5.6.2.4 Preparation of plants	168
5.6.2.5 Growth medium	168
5.6.2.6 Irrigation	168
5.6.2.7 Construction	169
5.6.2.8 Maintenance	171
5.6.3 Eco- Design Innovations	176
5.6.4 Results Achieved	177
5.6.4.1 Energy efficiency and atmosphere	177
5.6.4.2 Water efficiency	177
5.6.4.3 Air Quality	178
5.6.4.4 Site Ecology	179
5.6.5 Conclusion	179
5.7 Case Study (3): EDITT Tower, Singapore	185
5.7.1 Case Study Analysis	185
5.7.1.1 Project Basic Information	185
5.7.1.2 Project Description	186
5.7.1.3 Design Challenge	186
5.7.2 Vegetation Approach Analysis	186
5.7.2.1 Vegetation Approach used	186
5.7.2.2 Design planting concept	187
5.7.2.3 Plant species	187
5.7.2.4 Preparation of plants	189
5.7.2.5 Growth medium	189
5.7.2.6 Irrigation	189
5.7.2.7 Construction	189
5.7.3 Eco- Design Innovations	192
5.7.4 Results Achieved	193
5.7.4.1 Energy efficiency and atmosphere	193
5.7.4.2 Water efficiency	193
5.7.4.3 Indoor Air Quality	194
5.7.4.4 Site Ecology	195
5.7.5 Conclusion	195
5.8 Case Study (4): CDL's Tree House in Singapore, 2013	200
5.8.1 Case Study Analysis	200
5.8.1.1 Project Basic Information	200
5.8.1.2 Project Description	201