

CYCLIC BEHAVIOR OF BASE CONNECTION FOR C-BENT PIER SUBJECTED TO COMBINED FLEXURAL – TORSIONAL LOADING

By

Mohamed Abdelaziz Mohamed Abdelaziz

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
DOCTOR OF PHILOSOPHY
in
<Structural Engineering>

CYCLIC BEHAVIOR OF BASE CONNECTION FOR C-BENT PIER SUBJECTED TO COMBINED FLEXURAL – TORSIONAL LOADING

By Mohamed Abdelaziz Mohamed Abdelaziz

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
DOCTOR OF PHILOSOPHY
in
<Structural Engineering>

Under the Supervision of

Prof. Dr. El-Sayed Bahaa Machaly Prof. Dr. Sherif Saleh Safar

Professor of <steel structures> Structural Engineering Faculty of Engineering, Cairo University Professor of <steel structures> Structural Engineering Faculty of Engineering, Cairo University

CYCLIC BEHAVIOR OF BASE CONNECTION FOR C-BENT PIER SUBJECTED TO COMBINED FLEXURAL – TORSIONAL LOADING

By Mohamed Abdelaziz Mohamed Abdelaziz

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
DOCTOR OF PHILOSOPHY
in
<Structural Engineering>

Approved by the Examining Committee

Prof. Dr. Abdelraheem Khalil Mohamed Dessouky, External Examiner

Prof. Dr. Ashraf Mohamoud Gamal El Din Osman, Internal Examiner

Prof. Dr. El-Sayed Bahaa Machaly, Thesis Main Advisor

Prof. Dr. Sherif Saleh Safar, Member

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT

2017

Engineer's Name: Mohamed Abdel Aziz Mohame

Date of Birth: 29/7/1979 **Nationality:** Egyptian

E-mail: Steel4600@gmail.com **Phone:** 002 - 01001743767

Address: 58 Tomanby St. – Al-Tahra Sq.

Cairo

Registration Date: February/2010 **Awarding Date:**/..../

Degree: Doctor of Philosophy **Department:** Structural Engineering

Supervisors:

Prof. El-Sayed Bahaa Machaly

Prof. Sherif Saleh Safar

Examiners:

Prof. Abdelraheem Khalil Mohamed Dessouky

(External examiner)

Prof. Ashraf Mohamoud Gamal El Din Osman

(Internal examiner)

Porf. El-Sayed Bahaa Machaly (Thesis main advisor)

Porf. Sherif Saleh Safar (Member)

Title of Thesis:

CYCLIC BEHAVIOR OF BASE CONNECTION FOR C-BENT PIER SUBJECTED TO COMBINED FLEXURAL – TORSIONAL LOADING

Key Words:

Torsion; SAC Protocol; Drift-Rotation ratio; Stiffness; Base connection; Contact pressure

Summary:

A base connection of C-bent pier has been numerically investigated under combined cyclic flexural and torsional loading using software, Strand7. Material and geometrical nonlinearities are incorporated. Stiffness, strength, deformation, and ductility parameters are introduced to assess flexural and torsional response of the connection when subjected to cyclic loading. Individual behavior of base connection components has been addressed and design recommendations were introduced accordingly. An expression for anchor rod shear stiffness and global resistance of the connection to the twisting rotation are provided.

Acknowledgments

The author gratefully to first and foremost thanks God for his giving and guidance, also a thankfully acknowledgement goes to Prof. Bahaa Machaly and Dr. Sherif Safar for their endless support, without them this work would not see the light. I express my gratitude to Mr. Sayed Ibrahim, Mr. Ibrahim Abdelhaleem and to Dr. Mohamed Helal for their continuous encouragement, those are my real brothers. All appreciation and gratitude is for my precious little sister Marwa she spared no effort to support me and get this work accomplished. Last but not least to my wife who is always there for me, thank you for being patient for all what you have been through, during my dissertation.

Dedication

To my wonderful beloved mother who is always wanted to call me a doctor. Dear Mom your wish came true.

Table of Contents

Acknowl	edgments	i
Dedication	n	ii
Table of	Contents	iii
List of Fi	gures	vi
List of Ta	bles	xiii
Abstract .		xiv
Chapte	r 1 Introduction	1
1.1	Introduction	1
1.2	Research Objectives	1
1.3	Outline of the thesis	2
Chapte	r 2 Literature Review	4
2.1	Introduction	4
2.2	Related Research Works	5
2.2.	Loading Histories Protocols for Cyclic Testing [4]	5
2.2.	2 Effect of applied actions on base connection behaviour	7
2.2.	3 Initial stiffness of base connection	8
2.2.	Effect of connection components on its behavior	9
2.2.	5 Eccentrically loaded connection [11]	15
2.2.	Enhancement of base Connection performance	17
2.2.	7 Contact bearing pressure	20
2.2.	C	
2.2.	9 Special Types of Base plate connection	25
2.2.	10 Fatigue of Base connection subjected to repeated load	30
2.2.	11 Codes and standards	32
Chapte	r 3 Finite Element Modeling & Verification	39
3.1	General	39
3.2	Selection of the Verification Model	39
3.3	Finite Element Simulation	40
3.3.	1 Background	41
3.3.	2 Building Verification Model	42
3.4	Analytical results and Verification	53

Chapter	· 4 Parametric Study	57
4.1	General	57
4.2 N	Model Description	57
4.2.1	Plastic Moment Reserve	59
4.3 I	ndependent Parameters	59
4.3.1	Thickness of Base Plate	59
4.3.2	2 Stiffening condition	59
4.3.3	Number and arrangement of bolts	60
4.3.4	Eccentricity of gravity loads	60
4.3.5	Twist-Drift ratio "r"	61
4.4 I	Description of parametric analysis model	62
4.4.1	Base connection configurations	62
4.4.2	2 Loading configuration	63
4.5 I	Parametric analysis results	64
4.5.1	Moment – Rotation curve $(M - \Phi)$	65
4.5.2	2 Torsion – Twist Curve $(T - \theta)$	65
4.6 I	Parameters Describing Elastic Response	66
4.6.1	Reference Values for Elastic Responses	66
4.6.2	Plexural stiffness, (K_F)	67
4.6.3	Torsoinal stiffness, (K_T)	75
4.7 I	Parameters Describing Inelastic Response	79
4.7.1	Reference Values for Inelastic Responses	79
4.7.2	Yield moment, (M_Y)	80
4.7.3	Yield Curvature, (Φ_Y)	84
4.7.4	Curvature Ductility	89
4.7.5	Ultimate torsion, (T_U)	93
4.7.6	Ultimate twisting angle, (θ_U)	97
4.7.7	Summary and Conclusion	102
Chapter	5 Assessment of Connection Behavior	111
5.1	General	111
5.2 I	Base Plate	111
5.2.1	Base plate deformation	111
5.2.2	2 Base plate Curvature	113
5.2.3	8 Contact Pressure	119

5.3	An	chor Rod	125
5.3	3.1	Anchor Deformation	125
5.3	3.2	Mathematical model of anchor bolt stiffness	129
5.4	Su	mmary and conclusion	132
Chapt	er 6	Mathematical Modeling of Connection Behavior	134
6.1	Sh	ear model	134
6.2	To	rsion model	142
6.2	2.1	Components of torsion model	143
6.2	2.2	Formulation of the collecting spring stiffness	143
6.2	2.3	Predicted global torsional stiffness (K_T) for base connection	150
6.3	Su	mmary and Conclusions	151
Chapt	er 7	Summary and Conclusions	152
7.1	Su	mmary	152
7.2	Co	nclusions	153
7.3	Re	commendation	155
Refere	ence	S	156

List of Figures

Figure 2.1: Statistical analysis of the structural damage compiled after the 1995 Hyogo-ken Nanbu earthquake [1]
Figure 2.2: Steel C-Bent Bridge Pier
Figure 2.3: Various Loading Protocols [4]6
Figure 2.4: Evaluation of the experimental flexural resistance [5]
Figure 2.5: Comparison of measured moment drift ratio response: utilizing CW versus CW Annealed Gr. 36 anchor material (left) and with and without added stretch length (right) [7]
Figure 2.6: Various phenomenon in the anchor rod bearing mechanism [8]
Figure 2.7: Basic Behaviors of base plate [10]
Figure 2.8: Influence of Base Plate Thickness and Anchor Bolt Stiffness on Drift [6] 13
Figure 2.9: Effect of base plate thickness on the column base mechanical characteristics [1]
Figure 2.10: Test specimen with eccentrically loaded fastener group
Figure 2.11: load transfer for eccentrically loaded symmetric fastener pattern
Figure 2.12: Characteristics of column with self centering base connection [12]
Figure 2.13: Details and stiffness of an innovative type of column bases [13]
Figure 2.14: Experimental relation between Bending moment of base plate level v.s base plate rotation [13]
Figure 2.15: Distribution of Pressure under an Axially Loaded Base Plate [10]
Figure 2.16: Cable stayed bridge details [14]
Figure 2.17: Contact pressure under base connection of cable-stayed bridges tower conducted in [14]
Figure 2.18: Variation in Lateral Displacement with Base Connection Stiffness [6] 23
Figure 2.19: Undeformed shape and location of the bearing resultant [1]
Figure 2.20: Undeformed shape and location of the bearing resultant [10]
Figure 2.21: Details of Specimens conducted in the experimental work of (J.K. Hee; W.H. Jong; S.H Won) [16]
Figure 2.22: Concept of effective base plate [10]
Figure 2.23: test specimen conducted in the experimental works of [17]
Figure 2.24: A suggested detail for embedded base plate [10]

Figure 2.25: A Suggested Detail for Braced Frame Base Plates with Horizontal tie element [10]
Figure 2.26: Test set up arranged for fatigue test by (E. Anne Dechant) [18]31
Figure 2.27: S-N Curve (AASHTO 2010) [19]
Figure 2.28: Eurocode 3 model – components decomposition [20]
Figure 2.29: Failure modes of T-stub of column base [22]
Figure 2.30: The yield line patterns [22]
Figure 2.31: Area of the equivalent T-stub in compression [22]
Figure 2.32: Base plate design variables [23]
Figure 2.33: Load cases for the design of column bases using LRFD approach [23] 37
Figure 3.1 Details of Specimen Used in Experimental Works (All Dim. in inch) [24] 40
Figure 3.2 SAC phase II loading protocol for stepwise increasing cyclic test
Figure 3.3: A simplified view of the physical simulation process, reproduced to illustrate modeling terminology [25]
Figure 3.4: Different types of brick elements [26]
Figure 3.5: Finite Element Modeling of Bolt and Connection interfaces
Figure 3.6 Different types of Plate elements [26]
Figure 3.7 Finite Element Modeling of Column-Base Plate Assembly
Figure 3.8: Finite Element Modeling of Column to Base Plate Weld Point Contact 47
Figure 3.9 Finite Element Modeling of Bolt Hole Shaft
Figure 3.10 Stress-Strain Curve for Steel Type A354 Gr.DB for Bolt
Figure 3.11 Stress-Strain Curve for Steel Type A572 Gr.50 for Column
Figure 3.12 Stress-Strain Curve for Steel Type A36 for Base Plate
Figure 3.13 Finite Element Verification Model (Plate elements are extruded) 54
Figure 3.14 Comparison Between analytical and experimental results for Total Tensile Bolt Force
Figure 3.15 Comparison Between analytical and experimental results for Total Lateral Connection Force
Figure 3.16 Comparison Between analytical and experimental results for Strain variation on the base plate surface along line "A"
Figure 4.1: Isometric View for the C-bent model (All dimensions are in millimeters) 58
Figure 4.2: Base plate behavior models
Figure 4.3: Vertical stiffener configuration of Base connection
Figure 4.4: Number and pattern of bolts

Figure 4.5: Plastic stresses distribution on column box section
Figure 4.6: Connection configuration in parametric study
Figure 4.7: Detailed view for studied connection with full dimensions (All dimensions in millimeters)
Figure 4.8: Load Combination in parametric analysis
Figure 4.9: Global response of base connection for moment-curvature & torsion-rotation curves
Figure 4.10 Classification of joints by stiffness
Figure 4.11 Beam deformed shape under bending and twisting loading
Figure 4.12 Typical normalized moment – Curvature response curves with respect to loading configuration
Figure 4.13 Typical normalized moment – Curvature response curves with respect to connection assembly configuration
Figure 4.14 Relative flexural stiffness variation with respect to bolt pattern
Figure 4.15 Relative flexural stiffness variation with respect to study parameters (Eccentricity based comparison)
Figure 4.16 Relative flexural stiffness variation with respect to study parameters (Torsion based comparison)
Figure 4.17 Typical normalized torsion – twisting response curves with respect to loading configuration
Figure 4.18 Relative torsional stiffness variation with respect to study parameters (Eccentricity based comparison)
Figure 4.19 Relative torsional stiffness variation with respect to study parameters (Torsion based comparison)
Figure 4.20 Typical normalized torsion – twisting response curves with respect to connection assembly configuration
Figure 4.21 Generation process for inelastic reference values
Figure 4.22 Relative yield moment variation with respect to study parameters (Eccentricity based comparison)
Figure 4.23 Relative yield moment variation with respect to study parameters (Torsion based comparison)
Figure 4.24 Relative yield curvature variation with respect to study parameters (Eccentricity based comparison)
Figure 4.25 Relative yield curvature variation with respect to study parameters (Torsion based comparison)
Figure 4.26 Curvature ductility variation with respect to study parameters (Eccentricity based comparison)

Figure 4.27 Curvature ductility variation with respect to study parameters (Torsion based comparison)
Figure 4.28 Relative ultimate torsion variation with respect to study parameters (Eccentricity based comparison)
Figure 4.29 Relative ultimate torsion variation with respect to study parameters (Torsion based comparison)
Figure 4.30 Relative ultimate twisting angle variation with respect to study parameters (Eccentricity based comparison)
Figure 4.31 Relative ultimate twisting angle variation with respect to study parameters (Torsion based comparison)
Figure 5.1 Gage line key figure
Figure 5.2 Gage line deformation for base plate 75mm thickness 10P1-Blt pattern 112
Figure 5.3 Gage line deformation for base plate 95mm thickness 10P2-Blt pattern 113
Figure 5.4 Schematic representation of base plate curvature
Figure 5.5 Breakdown for the components of base plate curvature 6-Blt pattern 116
Figure 5.6 Breakdown for the components of base plate curvature 10P1-Blt pattern 117
Figure 5.7 Breakdown for the components of base plate curvature 10P2-Blt pattern 118
Figure 5.8 Gage line contact pressure for base plate under concentric loading
Figure 5.9 Gage line contact pressure for base plate under eccentric loading
Figure 5.10 Resultant force of contact pressure
Figure 5.11 Variation of the location for resultant force of contact pressure
Figure 5.12: Proposed contact pressure distribution
Figure 5.13 lateral deformation types for anchor rods
Figure 5.14 Sag at tension side of base plate due to seismic action
Figure 5.15 Anchor rod deformed shape for Un-stiffened connection
Figure 5.16 Anchor rod deformed shape for Stiffened connection
Figure 5.17 Bearing Stress distribution with respect to base plate thickness
Figure 5.18 Deformation break down for anchor rod stiffness model
Figure 5.19 Typical load – deformation scheme for anchor rod
Figure 5.20 Scatter diagram for shear stiffness of anchor rod
Figure 6.1 Anchor rod ID and applied action for shear model analysis
Figure 6.2 Monitoring curves for the forces variation of anchor rod located at compression side of gravity moment for 10P1-Blt pattern
Figure 6.3 Monitoring curves for the forces variation of anchor rod located at tension side of gravity moment for 10P1-Blt pattern

Figure 6.4: Shear distribution through anchor rods for 10P1-Blt pattern	138
Figure 6.5: Shear distribution through anchor rods for 6-Blt pattern	140
Figure 6.6: Shear distribution through anchor rods for 10P2-Blt pattern	141
Figure 6.7 Proposed seismic shear model	142
Figure 6.8 Torsion Model Analogy for spring wheel model	143
Figure 6.9 Breakdown for twisting angle components	144
Figure 6.10 Modeling philosophy for base plate bearing	145
Figure 6.11 Rigid body rotation for base connection with spring wheel model	147
Figure 6.12 Numerical results for torsional stiffness of base connections	148
Figure 6.13 Analytical results for base plate bearing stiffness	149

List of Tables

Table 2.1: Specimen details [15]
Table 3.1: Mechanical Properties of Connection Elements
Table 3.2 Degrees of freedom for beam element [26]
Table 3.3 Point Contact elements structural properties [26]
Table 4.1: lists of gravity axial load Pg and gravity moment Mg obtained at each eccentricity value "E"
Table 4.2: Parametric values of "r" and relevant SAC load multipliers
Table 5.1: Verification of analytical model for un-stiffened base plate connection with 75mm thick with 10P2 – Blt pattern
Table 5.2: Verification of analytical model for stiffened base plate connection with 75mm thick with 10P2 – Blt pattern
Table 5.3: statistical analysis of anchor rod shear stiffness
Table 6.1: Values of collecting spring stiffness in terms of global torsional stiffness 148
Table 6.2: statistical analysis results for base plate bearing stiffness (6 - Blt)
Table 6.3: statistical analysis results for base plate bearing stiffness (10P1 - Blt)
Table 6.4: statistical analysis results for base plate bearing stiffness (10P2 - Blt)
Table 6.5: Predicted analytical values for the global torsional stiffness (K_T) based on bolt pattern