Management of Cervical Spondylotic Myelopathy by Laminoplasty

Essay

Submitted for Partial Fulfillment of the Requirement for the master degree in **Orthopaedic Surgery**

By

Peter Fayek Habib (M.B.B.CH)

Supervised by

Dr. Ahmed Mohammad El- Badrawi

Asst. Professor of Orthopaedic Surgery Faculty of Medicine, Ain Shames University

Dr. Fady Micheal Fahmy

Lecturer of Orthopaedic Surgery Faculty of Medicine, Ain Shames University

> Faculty of Medicine Ain Shames University (2016)

Acknowledgement

First of all, thanks to "God" who gave me the power to accomplish this work.

Really I can hardly find the words to express my gratitude to **Dr. Ahmed Mohammad El-Badrawi**, Asst. Professor of Orthopaedic Surgery, Faculty of Medicine, Ain Shames University, for his supervision, continuous help, encouragement throughout this work and tremendous effort he has done in the meticulous revision of the whole work. It is a great honor to work under his guidance and supervision.

I would like also to express my sincere appreciation and gratitude to **Dr. Fady Micheal Fahmy**, Lecturer of Orthopaedic Surgery, Faculty of Medicine, Ain Shames University, for his continuous directions and support throughout the whole work.

Last but not least, I dedicate this work to my family, whom without their sincere emotional support, pushing me forward this work would not have ever been completed.

List of Contents

	Page
• Acknowledgment	
• List of Abbreviations	i
• List of Figures	ii
• List of Tables	V
• Abstract	vi
• Introduction	1
Chapter 1:	
Relevant Anatomy	2
Chapter 2:	
Biomechanics of the Cervical Spine	12
Chapter 3:	
Pathology and pathophysiology	21
Chapter 4:	
Diagnosis	31
Chapter 5:	
Treatment of cervical spondylotic myelopathy	68
• Summary	105
• Conclusion	107
• References	108
Arabic summary	

List of Abbreviations

ACCF : Anterior cervical corpectomy and fusion

ACDF : Anterior cervical Discectomy and fusion

AIDS : Acquired immune deficiency syndrome

ALS : Amyotrophic lateral sclerosis

APCR : Anteroposterior compression ratio

CSM : Cervical spondylotic myelopathy

CT : Computed Tomography

DISH : Diffuse idiopathic skeletal hyperostosis

ELAP : Expansive open-door laminoplasty

HSV : Herpes simplex virus

HTLV-I : Human T-lymphotropic virus type I

LMNL : Lower motor neuron lesion

mJOA : modified Japanese Orthopaedic Association

MRI : Magnetic Resonance Imaging

OLF : Ossification of the ligamentum flavum

OPLL : Ossification of posterior longitudinal ligament

ROM : Range of motion

SI : Signal intensity

UMNL : Upper motor neuron lesion

List of Figures

Fig.	Title	Page
1	Anatomy of cervical vertebrae	4
2	Articulated cervical vertebrae	5
3	Anatomy of the lateral mass of cervical	6
	spine	
4	Posterior longitudinal ligament	8
5	Ligaments of the spine	8
6	Blood supply of the spinal cord	10
7	The coupling patterns of the spine change	13
	from the cervical to the lumbar region	
8	Sagittal plane translation	17
9	Sagittal plane rotation	17
10	Cervical lordotic angle	18
11	Central cord syndrome	28
12	Anterior cord syndrome	29
13	Brown-sequard syndrome	29
14	Posterior cord syndrome	30
15	Light and superficial sensation	36
16	Dermatomal map for both upper and lower	37
	limbs	
17	Vibration and joint position sense	39
18	Ascending sensory tracts	39
19	Hoffmann's reflex	41
20	Babiniski (planter) response	42
21	Finger escape sign	43
22	Grip and release test	44
23	Myelopathic hand	45
24	Inverted radial reflex	45
25	Ankle clonus	46
26	Visual Analog Scale	49
27	Pavlov ratio	51
28	Cervical sagittal alignment	51

Fig.	Title	Page
29	Local kyphoyic angle	52
30	Signal intensity on MRI	54
31	Also signal intensity on MRI	55
32	Magnetic resonance image with spinal cord	58
	hyper-signal and compression	
33	Compression ratio	59
34	Multiple images of OPLL	60,61
35	Also CT and MRI for OPLL cases	62
36	Different types of cervical OPLL	62
37	Different images of CT Myelogram	63
38	Cervical alignment and posterior	70
	decompression	
39	Post laminectomy kyphosis	73
40	Laminectomy with fusion	74
41	Intra-operative photograph of the prone	79
	position for laminoplasty procedure	
42	Posterior approach to cervical laminoplasty	80
43	Lamina exposure	80
44	In the Z-Plasty, troughs are first drilled into	81
	the lamina at the junction of the lateral	
	mass. The laminae are then thinned. After	
	this, a "Z" is cut in the laminae with a	
	high-speed drill.	
45	After the cuts, the laminae are spread apart	82
	and held with wires or suture, effectively	
	widening the canal	
46	In the Hirabayashi type open-door	82
	laminoplasty, a trough is first drilled in the	
4 =	laminae.	0.5
47	After drilling the complete trough on the	83
	open-door side, a second trough is drilled	
	on the closed side.	

Fig.	Title	Page
48	After the troughs have been cut, the ligamentum flavum between the rostral and caudal vertebrae and their respective rostral and caudal neighbors must be removed with a Kerrison punch	84
49	The laminae may be held open with sutures passing around or through the spinous processes and the facet capsule on the closed side.	85
50	The laminae may also be held open with titanium mini-plates.	86
51	Post-laminoplasty view using plate fixation to hold the posterior hinge open	86
52	An axial computed tomographic scan of a patient 6 months after a Hirabayashi type open-door laminoplasty	87
53	X-rays of expansive open door laminoplasty keeping open by mini-plates	87
54	Fixation of the opened lamina by an anchor-screw system	88
55	X-rays of expansive open door laminoplasty using anchor system	88
56	In the French door type laminoplasty, the spinous processes are split in the midline.	90
57	After the completion of the trough cuts, the spinous processes are split in the midline.	91
58	Modifications to keep lamina opened in french door laminoplasty	92
59	Kurokawa modification	93
60	Tomita modification (T saw laminoplasty)	94

List of Tables

Table	Title	Page
1	Movements commonly tested in both	35
	upper and lower limbs	
2	Grading of muscle power	36
3	Monosynaptic (deep tendon) reflexes and	40
	root innervations	
4	Nurick grading.	47
5	Ranawat grading	47
6	Modified Japanese Orthopaedic	48
	Association Criteria for the evaluation of	
	operative results in Patients with Cervical	
	Myelopathy	
7	Classification of intra-medullary signal	53
	intensity	
8	Different studies by many authors on	55
	signal intensity on MRI	

Abstract

Laminoplasty was developed to treat multilevel pathology of the cervical spine, namely ossification of the posterior longitudinal ligament and cervical spondylotic myelopathy. Laminoplasty was popularized in the 1980s, and since then many variations on the theme have been developed. All are similar in that they expand the cervical canal while leaving the protective dorsal elements in place. Advocates claim that this prevents the formation of the "post laminectomy" membrane, maintains spinal alignment, and should aid in maintaining cervical range of motion. The potential shortcomings aforementioned are all laminectomy or laminectomy and fusion. The procedure has essentially equal be to other decompressive procedures in the neutral or lordotic spine, and outcome has been shown to be durable.

Keywords:

Cervical spondylotic myelopathy; Laminoplasty; Laminoplasty techniques; Comparative laminectomy; Cervical spondylosis; Cervical stenosis; Cervical cord ischemia; Cervical sagittal alignment; Ossification of posterior longitudinal ligament; Congenitally small cervical spinal canal; Cervical cord syndromes; Babinski sign; Hofffmann's reflex; Ankle clonus; Pavlov ratio; Signal intensity in MRI; Antero-posterior compression ratio; Modified Japanese orthopedic association; Hirabayashi laminoplasty; French door laminoplasty.

Introduction

Cervical spondylotic myelopathy is a common spinal disorder that commonly results from the degenerative process of the vertebral column and associated soft tissue structures.⁽¹⁾

In the majority of patients, the cervical spondylotic myelopathy (CSM) occurs secondary to degenerative changes associated with the normal aging process. Progressive cervical spondylosis may lead to spinal cord compression, which may be exacerbated by spinal instability, kyphotic deformity, ossification of the posterior longitudinal ligament (OPLL), and large central disc herniation. (2)

The diagnosis of the cervical spondylotic myelopathy include many symptoms and signs at both upper and lower extremities and many tests may be positive, also radiographic evaluation by plain x-ray, CT scan and MRI is needed to fulfill the diagnosis. (2)

The treatment of cervical spondylotic myelopathy is by conservative treatment in the beginning which includes medical treatment and physiotherapy and if there is no response surgical treatment is considered in the form of decompression procedures to relieve the cord compression. (3)

Laminoplasty achieve posterior decompression of the cord and many techniques are used for this procedure. (3)

Chapter 1

Relevant Anatomy

The cervical spine is uniquely adapted to allow for a wide range of motion including flexion, extension, and movements in the lateral bending planes. It consists of seven vertebrae stacked on top of each other, spinal ligaments, and the spinal cord which run within the spinal canal. The C1 and C2 vertebrae are anatomically different from other vertebrae while the others are almost identical. Normally, the cervical spine has a lordotic curvature. (4)

The cervical vertebral canal is smooth-walled tubular space formed by vertebral foramina of the seven cervical vertebrae which lying one above the other. Its anterior boundaries are the bodies of vertebrae, intervertebral discs and the posterior longitudinal ligaments. Posteriorly the canal bounded by the vertebral lamina, spinous process and ligaments flava. While at sides the pedicles of vertebrae form the lateral boundaries. There is a transverse process which project from the junction of the pedicle to the vertebral body. The cervical vertebra articulates with each other through intervertebral disc anteriorly and facets posteriorly. (4)

The cervical spinal canal is relatively large and triangular in cross-section except at the level of the atlas vertebra, where it is almost circular. The size of the canal decreases from the first to the third cervical vertebra, but inferior to this it is relatively constant. The transverse diameter of the spinal canal is larger than, or equal to, the sagittal diameter. Sagittal spinal canal diameter in the lower cervical spine averages 17-18 millimeters in the normal individuals. Most compressive symptoms are generated in the C5 through C7 levels due to the fact that the cervical spinal cord occupies 3/4 of the canal at this level in the

normal patient. The minimal sagittal spinal canal diameter considered to be normal in the lower cervical region is 13 millimeters. Sagittal canal diameters less than or equal to 12 millimeters are considered to be critical to the development of myelopathy. It should be noted that the spinal cord average antero-posterior diameter is 10 millimeters, with a range from 8.5 millimeters to 11.5 millimeters. (5)

The vertebral body has a convex anterior surface and a flat or minimally concave posterior surface and its discal margins give attachment to the posterior longitudinal ligament. The superior surface is saddle-shaped while the inferior surface is concave. (5)

The pedicles are stout bars extending postero-laterally from the superior aspect of the vertebrae. In spite of their size and composition largely of cortical bone, they are commonly injured in severe trauma because of their orientation. (5)

The laminae extend dorsomedially from the pedicles, fuse in the midline to form the dorsum of the canal and give rise to the spinous processes. The spinous processes, which are short, often bifid, and point inferiorly, serve as attachment points for muscles and ligaments, as do the transverse processes. The spinous processes are attached to the ligamentum nuchae and numerous deep extensors, including semispinalis thoracis and cervicis, multifidus, spinalis and interspinales. (5)

The uncinate processes are seen from C3 to C7 as protrusions dorso-laterally from the vertebral bodies and serve to prevent lateral displacement. (5)

The transverse processes project from the junction of the pedicle to the vertebral body, incorporating the transverse foramen from C1 to C6, which transmits the vertebral artery.⁽⁶⁾

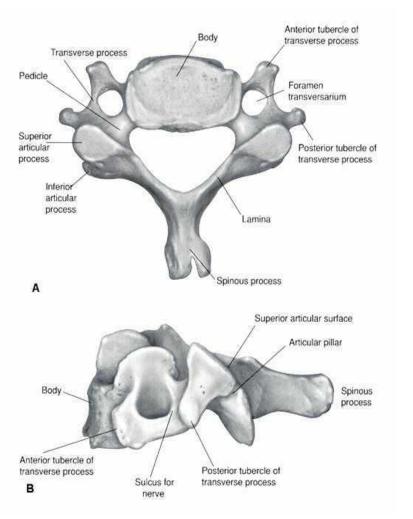


Fig.(1): Anatomy of cervical vertebrae. A: axial view, B: lateral view. (5)

The facets arise from the superior and inferior surfaces of the pedicle. The superior surfaces project cranially, and the latter project caudally. In the cervical spine, the facets face upward 45 degrees towards the horizontal, allowing significant physiologic rotation. At C3, a change in orientation occurs which explains, in part, the relatively high frequency of facet dislocations occurring at this level. Facets are important in absorbing compression force, particularly in traumatic loading conditions; because of their capsules and orientation, they are also important flexion limiters. (7,8)

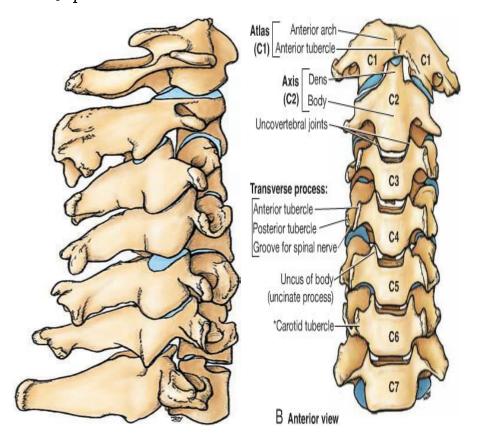


Fig. (2): Articulated cervical vertebrae (9)

The lateral mass of the cervical vertebra (Fig. 3) consists of the superior and inferior facets. The area of the lateral mass is the part lateral to the lamina and between the margins of the adjacent facets. The mean supero-inferior diameters of the lateral mass range from 11 mm at C3 to 15 mm at C7, the average medio-lateral diameters (width) is $(11.92 \pm 0.96 \text{ mm})$ and the average antero-posterior diameter (depth) of the lateral mass is $(12.83 \pm 1.28 \text{ mm})$ which is smaller at the C6-C7 levels than at the levels above. ^(5,8)

Anterior to the lateral mass are the pedicle, transverse foramen, and posterior ridge of the transverse process. The adjacent pedicle, the postero-lateral wall of the vertebral body, and the antero-medial aspect of the superior articular process form the interpedicular foramen. The posterior ridge of the transverse process originates from the latero-inferior portion of the anterior aspect of the lateral mass just above the inferior articular facet. It develops laterally and inferiorly to accommodate the course of the ventral ramus of the spinal nerve. (5,7)

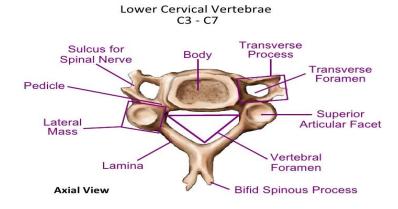


Fig. (3): The anatomy of the lateral mass of cervical spine. (6)

Ligaments:

The spinal ligaments are composed of elastin and collagen in varying ratios. They are uni-axial structures, resisting tension and buckling in compression. With age, their effectiveness is diminished. Studies of ligament strength have suggested the tensile strength varies from ligament to ligament and even within a given ligament at different spinal levels, in part due to ligament size. (5)

From the standard point of normal and pathologic spinal motion, ligaments may be the most important structures in the spinal column, as they serve to allow a certain degree of physiologic motion, maintain anatomic relationships, and as noted by **White and Panjabi**, protect the spinal cord during traumatic situations. (5)