Effect of Naïve Versus Hepatogenic Partially Differentiated Mesenchymal Stem Cells on The Hepatic and Cognitive Functions in Thioacetamide Induced Liver Cirrhosis in Male Rats

Thesis

Submitted in partial fulfillment of MD Degree in

Physiology

By

Dalia Azmy Mahmoud Elberry

Assistant lecturer of Physiology Faculty of Medicine – Cairo University

Under supervision of

Prof. Dr. Maha Mohamed Gamal El-Din

Professor of Physiology Head of Physiology Department Faculty of Medicine – Cairo University

Dr. Shaimaa Nasr Amin

Lecturer of Physiology
Faculty of Medicine – Cairo University

Prof. Dr. Laila Ahmad Rashed

Professor of Biochemistry
Faculty of Medicine – Cairo University

Dr. Reham Shehab Elnemr Ismael

Researcher of Pathology National Research Center

Faculty of Medicine - Cairo University 2016

بسم الله الرحمن الرحيم

﴿ مَنْ عَمِلَ حَالِمًا مِنْ ذَكَرٍ أَوْ أَنْثَى وَهُوَ مُؤْمِنٌ فَلَنُحْدِيَنَّهُ مَنْ عَمِلَ حَالَمُ فَا كَانُوا يَعْمَلُونَ ﴾ حَيَاةً طَيِّرَةً وَلَنَجْزِيَنَّهُمْ أَجْرَهُمْ بِأَحْسَنِ مَا كَانُوا يَعْمَلُونَ ﴾ حَيَاةً طَيِّرَةً وَلَنَجْزِيَنَّهُمْ أَجْرَهُمْ بِأَحْسَنِ مَا كَانُوا يَعْمَلُونَ ﴾

(النحل: آية ٩٧)

اهداء

الى والدي العبيب...بين يدي الله

الى والدتي الحبيبة... حفظما الله

Acknowledgement

First of all, thanks to **ALLAH**, the most merciful, who gave me the power and patience throughout my work. May the peace and blessing be upon our prophet Muhammad, our guide and the greatest teacher.

I had the honor and I feel really blessed to accomplish my work under the supervision of **Prof. Dr. Maha Muhammad Gamal Eldeen,** Professor of Physiology and Head of Physiology Department, Faculty of Medicine, Cairo University. I'm really indebted to her for her unlimited support, kind encouragement, valuable enrichment of this work and meticulous supervision.

No words can express my deep appreciation to my sincere friend and dear colleague **Dr. Shaimaa Nasr Amin,** Lecturer of Medical Physiology, Faculty of Medicine, Cairo University, for her valuable help, tremendous support and faithful guidance throughout this study.

I would like to express my deep thanks to **Prof. Dr. Laila Ahmed Rashed,** Professor of Medical Biochemistry, Faculty of Medicine, Cairo
University, for expert guidance, precious advice and appreciable help in the
practical part of this work.

Special thanks for **Dr. Reham Shehab Elnemr**, Researcher at Pathology Department, National Research Center, for her continuous help and great effort in performing the histopathological work of this study.

Finally, I wish to express my deep thanks and gratitude to my respectable professors, dear colleagues and all members of Physiology Department, Faculty of Medicine, Cairo University, for their kind support and insightful suggestions.

Contents

*	LIST OF ABBREVIATIONS	ii
*	LIST OF FIGURES	vii
*	LIST OF TABLES	X
*	INTRODUCTION AND AIM OF THE WORK	1
*	REVIEW OF LITERATURE	4
	> Liver Fibrosis	4
	> Stem Cells	24
	> Hepatic Encephalopathy	47
	> Cognitive Functions and Animal Behaviour	65
.	MATERIALS AND METHODS	74
*	RESULTS	99
*	DISCUSSION	137
*	CONCLUSION AND RECOMMENDATION	167
.	SUMMARY	169
*	REFERENCES	175
*	ADARIC SUMMARY	

List of Abbreviations

 α –SMA : α smooth muscle actin

Ach : acetylcholine

AChE : acetylcholinesterase

AFP : alpha fetoprotein

ALT : alanine aminotransferase

AMPA : α-amino-3-hydroxy-5-methyl 4-isoxazolepropionic acid

AST : aspartate aminotransferase

Bax : Bcl-2-associated x protein

BBB : blood-brain barrier
Bcl2 : B-cell lymphoma 2

Bcl-xl : B-cell lymphoma-extra large

BDL : bile duct-ligated

BG : basal ganglia

BMSCs : bone marrow derived stem cells

BSA : bovine serum albumin

CA : cornu ammonis

CA-MMP : cysteine array matrix metalloproteinase

cAMP : cyclic adenosine monophosphate

CCl₄ : carbon tetra-chloride

CD : cluster of differentiation

cDNA : complementary deoxyribonucleic acid

CHE : chronic hepatic encephalopathy

CK : cyto-keratin

CNS : central nervous system

Cpu : caudate-putamen

CR : competitive reaction

 C_T : cycle threshold

CYP450 : cytochrome P450

D1 receptors : dopamine type 1 receptors

DA : dopamin

DCs : dendritic cells

DEPC : diethyl pyrocarbonate

DG : dentate gyrus

DMN : dimethyl nitrosamine

DNA : deoxyriboNucleic Acid

dNTPs : deoxynucleotide triphosphate

DP : direct pathway

EAAC-1 : excitatory amino acid carrier

EB : embryoid bodies EC : entorhinal cortex

ECM : extracellular matrix

EGF : epithelial growth factor

ELISA : enzyme-linked immunosorbent assay

EMT : epithelial-to-mesenchymal transition

ESCs : embryonic stem cells

FGF : fibroblast growth factor

FITC fluorescein isothiocyanate

FLIP : FLICE-like inhibitory protein

GABA : gamma amino butyric acid

GAPDH : glyceraldehyde 3-phosphate dehydrogenase

GDH : glutamate dehydrogenase

GFAP : glial fibrillary acidic protein

GFP : green fluorescent protein

Gln : glutamine

GLT : glutamate transporter

GLUT : glucose transporter

GPI : glycosyl phosphatidyl inositol

GS : glutamine synthase

H&E : hematoxylin and eosin

hBMMSCs : human bone-marrow MSCs

HD cells : head-direction cells

HE : hepatic encephalopathy

HGF : hepatocyte growth factor

HLA : histocompatibility locus antigen

HMGB-1 : high mobility group box-1

HPRI : Human Placental Ribonuclease Inhibitor

HPX : hemopexin

HSCs : hepatic stellate cells

HSCs : hematopoietic stem cells

IDO : indoleamine 2,3-dioxygenase

IFN-γ : Interferon-gamma

IL : interleukin

IP : indirect pathway

iPSCs : induced pluripotent stem cells

KCs : Kupffer cells

KGA : α-ketoglutaric acid

KO mice : knockout mice

LAP : latency-associated peptide

LDH : lactate dehydrogenase LGP : lateral globus pallidus

LTBP : latent TGF-β binding protein

LTP : long term potentiation

MAO : monoamine oxidase

MAPK : mitogen-activated protein kinase

MFs : myofibroblasts

mGluR1 : metabotropic glutamate receptor 1

MGP : medial globus pallidus

MHC : major histocompatibility complex

miRNAs : micro ribonucleic acids

MMLV : moloney murine leukemia virus

MMP : matrix metalloproteinase

MPT : mitochondrial permeability transition

MSCs : mesenchymal stem cells

MT : masson trichrome

MT-MMPs : membrane type matrix metalloproteinases

MWM : Morris water maze

Nac : nucleus accumbans

NADPH : nicotinamide adenosine dinucleotide phosphate

NAFLD : nonalcoholic fatty lives disease

NAPBI : N-acetyl-p-benzoquinone imine

NF-κB : nuclear factor kappa B

NGF : nerve growth factor

NKCs : natural killer cells

NMDA : N-methyl D-aspartate

NOS : nitric oxide synthase

NOX : NADPH oxidase

NR : NMDA receptor subunit

NS : neurosteroids

NT : neurotransmitter

OD : optical density

ONS : oxidative nitrosative stress

ONS : oxygen nitrogen species

PAG : phosphate-activated glutaminase

PBS : phosphate buffer saline

P-C : porto-central

PCA : porto-caval anastomosis

PCR : polymerase chain reaction

PCS : porto-caval shunt

PD : programmed death

PDGF : platelet derived growth factor

PD-L : programmed death ligand

PER : perirhinal cortex

PFC : prefrontal cortex

PMC : pre-motor cortex

POR : postrhinal cortex

P-P : portal to portal

PSD : post-synaptic density

PTBR : peripheral-type benzodiazepines receptors

PTP : permeability transition pore

qRT-PCR : quantitative real time-polymerase chain reaction

RAM : radial-arm maze

RNAse : ribonuclease

RNS : reactive nitrogen species

RONS : reactive oxygen and nitrogen species

ROS : reactive oxygen species

RQ : relative quantification

SAP : synapse-associated protein

SCF : stem cell factor

SCNT : somatic cell nuclear transfer

SDF : stromal cell-derived factor

SNr : substantia nigra pars reticulata

TAA : thioacetamide

TASO : thioacetamide sulfoxide

TASO2 : thioacetamide -S-dioxide

TGF-β1 : transforming growth factor-beta1

THBS : thrombospondin

TIMP : tissue inhibitor of matrix metalloproteinase

TNF- α : tumor necrosis factor- α

TSP-1 : thrombospondin-1

TβR : TGF-β receptor

VEGF : vascular endothelial growth factor

VMT : ventro-medial thalamus

List of Figures

	Figure	Page
1.	Sinusoidal events during liver injury	6
2.	The proposed sources of hepatic myofibroblasts	10
3.	Sequential steps in the synthesis of TGF-β latent complex and secretion	11
4.	Proposed model of TGF-β latent complex and active TGF-β Smad signaling	12
5.	The schematic structure of MMPs family	15
6.	MMP activation pathways	17
7.	Three approaches of nuclear reprogramming to pluripotency	29
8.	Potential applications of human iPSCs for liver diseases.	41
9.	Mechanisms of liver repopulation after stem cell transplantation	43
10.	Changes in synaptic proteins in HE.	55
11.	Hypothesis of the multifactorial nature of HE	61
12.	Forms of long term memory	66
13.	Y-maze task	76
14.	Open field apparatus	77
15.	Morphology of cultured MSCs	80
16.	2-fold dilution series produced by the standard stock solution as a step in the procedure of assessment of serum TGF-β1 by ELISA	88
17.	Schematic representations showing the three-dimensional organization of the hippocampal region in the rat brain	91
18.	Main components of the basal ganglia shown on coronal diagrams of the rat brain.	91
19.	Comparison of serum ALT levels in different studied groups.	103
20.	Comparison of serum albumin levels in different studied groups.	104
21.	Comparison of serum ammonia levels in different studied groups.	105
22.	Comparison of serum level of TGF-β1 in different studied groups.	105
23.	Comparison of relative expression of α-SMA in different studied groups	107
24.	Comparison of relative expression of MMP2 in different studied groups.	107
25.	Comparison of relative expression of TIMP2 in different studied groups.	108
26.	Comparison of MMP2/TIMP2 ratio in different studied groups.	108
27.	Comparison of relative expression of Bax pro-apoptotic marker in different studied groups.	109

28.	Comparison of relative expression of Bcl2 anti-apoptotic marker in different studied groups.	110
29.	Comparison of Bax/Bcl2 ratio in different studied groups	110
30.	Comparison of relative expression of hippocampal GFAP in different studied groups	112
31.	Comparison of relative expression of hippocampal synaptophysin in different studied groups.	112
32.	Comparison of relative expression of basal ganglia dopamine (D1) receptors in different studied groups.	113
33.	Homing of MSCs in liver tissue	114
34.	Photomicrograph of the liver section in control group stained by H&E	114
35.	Photomicrograph of the liver section in control group stained by MT	115
36.	Photomicrograph of the liver section in TAA group stained by H&E	115
37.	Photomicrograph of the liver section in TAA group stained by MT	116
38.	Photomicrograph of the liver section in naïve MSCs group stained by H&E	116
39.	Photomicrograph of the liver section in naïve MSCs group stained by MT	117
40.	Photomicrograph of the liver section in differentiated MSCs group stained by H&E	117
41.	Photomicrograph of the liver section in differentiated MSCs group stained by MT	118
42.	Comparison of percentage of fibrosis area in liver of different studied groups	119
43.	Homing of MSCs in brain tissue	120
44.	Photomicrograph of the CA1 hippocampal granular layer in control group	120
45.	Photomicrograph of the CA1 hippocampal pyramidal layer in the control group	121
46.	Photomicrograph of the basal ganglia in the control group	121
47.	Photomicrograph of the CA1 hippocampal granular layer in TAA group	122
48.	Photomicrograph of the CA1 hippocampal pyramidal layer in the TAA group	122
49.	Photomicrograph of the basal ganglia in the TAA group	123
50.	Photomicrograph of the CA1 hippocampal granular layer in naïve MSCs group	123
51.	Photomicrograph of the CA1 hippocampal pyramidal layer in the naïve MSCs group	124
52.	Photomicrograph of the basal ganglia in the naïve MSCs group	124
53.	Photomicrograph of the CA1 hippocampal granular layer in differentiated MSCs group	125
54.	Photomicrograph of the CA1 hippocampal pyramidal layer in the differentiated MSCs group	125
55.	Photomicrograph of the basal ganglia in the differentiated MSCs group	126

56.	Correlation between serum level of TGF-β1 and alternation score in studied groups	127
57.	Correlation between serum level of TGF- $\beta 1$ and number of line crossing in studied groups.	128
58.	Correlation between serum level of ammonia and alternation score in studied groups.	129
59.	Correlation between serum level of ammonia and number of line crossing in studied groups.	130
60.	Correlation between relative expression of dopamine receptors (D1) and alternation score in studied groups.	131
61.	Correlation between relative expression of dopamine receptors (D1) and number of line crossing in studied groups.	132
62.	Correlation between relative expression of hippocampal GFAP and alternation score in studied groups.	133
63.	Correlation between relative expression of hippocampal GFAP and number of line crossing in studied groups	134
64.	Correlation between relative expression of hippocampal synaptophysin and alternation score in studied groups	135
65.	Correlation between relative expression of hippocampal synaptophysin and number of line crossing in studied groups.	136

List of Tables

	Table	Page
1.	Cell types of the liver	6
2.	Types of different MMPs & their substrate specificity	14
3.	Clinical presentation of hepatic encephalopathy	47
4.	Ammonia solutions and their volumes	85
5.	Components of the cDNA master mix and their volumes	94
6.	The oligonucleotide primers sequence of studied genes (in vivo).	94
7.	Running condition for RT-PCR	95
8.	Ishak scoring system	96
9.	Comparison of the performance in Y-Maze and open field tests in different studied groups before induction of liver cirrhosis.	100
10.	Comparison of the performance in Y-Maze and open field tests in different studied groups after induction of liver cirrhosis.	101
11.	Comparison of liver functions (serum ALT and albumin), serum ammonia and TGF-β1 levels in different studied groups.	103
12.	Comparison of relative expression of liver tissue parameters in different studied groups	106
13.	Comparison of relative expression of hippocampal GFAP and synaptophysin and basal ganglia dopamine (D1) receptors in different studied groups	111
14.	Comparison of percentage of fibrosis area in liver of different studied groups and Ishak score of each group	118
15.	Correlations between serum level of TGF-β1 and alternation score and number of line crossing in studied groups	127
16.	Correlations between serum level of ammonia and alternation score and number of line crossing in studied groups	129
17.	Correlations between relative expression of basal ganglia dopamine receptors (D1) and alternation score and number of line crossing in studied groups	131
18.	Correlations between relative expression of hippocampal GFAP and synaptophysin and alternation score and number of line crossing in studied groups	133

Introduction

Liver cirrhosis represents the final pathologic outcome for the majority of chronic liver diseases (*Salama et al., 2014*). It is a term which describes the histological development of regenerative nodules surrounded by fibrous bands in response to chronic liver injury caused by multiple factors like; hepatitis B, hepatitis C, alcoholic liver disease, hepatotoxic drugs and toxins (*Huang et al., 2013*).

Due to the functional overcapacity of liver, fibrosis and even cirrhosis are frequently asymptomatic until it is complicated by a life threatening event such as variceal hemorrhage, spontaneous bacterial peritonitis and hepatic encephalopathy (Schuppan & Afdhal, 2008).

Despite of the improvements in management of liver cirrhosis, the overall outcome of the disease remains poor (*Bai et al.*, 2014). Current treatment for liver cirrhosis is to prevent further damage of the functional hepatocytes as well as liver transplantation. Although a great advance in liver transplantation has took place, still it has several limitations, including lack of donors, surgical complications, immunological suppression and high medical cost (*Singal et al.*, 2011). Alternative therapeutic approaches through stem cells may become other options (*Chang et al.*, 2009).

Stem cells are undifferentiated highly specialized cells having capacity to renew itself and are capable of dividing for long period of time to grow different cell types (*Ding et al., 2011*). Stem cells are either isolated from natural sources or bioengineered from adult somatic cells through "therapeutic cloning" or "nuclear reprogramming" (*Nelson et al., 2009*).

Among the different types of stem cells, mesenchymal stem cells (MSCs) in particular have been thought as a promising source of stem cells in regenerative medicine (Shetty et al., 2015) because of their high capability for self-renewal and differentiation without ethical or tumorigenic problems (Jang et al., 2013). MSCs are non-hematopoietic multipotent stem cells that are capable of differentiating into both mesenchymal and non-mesenchymal lineages (Shetty et al., 2015).