Using Magnetic Resonance Imaging for the Assessment of Left Ventricular Mechanical Dyssynchronyin Comparison with Doppler Tissue Imaging

Thesis

Submitted for the Partial Fulfillment of MD Degree in **Cardiology**

By

Sarah Moharem Elgamal

M.Sc. Cardiology, Ain Shams University

Under Supervision of Prof. Mervat Aboel Maaty Nabih

Professor of Cardiology, Ain Shams University

Ass.Prof. Mohamed Amin Abdel Hamid

Assistant Professor of Cardiology, Ain Shams University

Ass. Prof. Mazen Tawfik Ibrahim

Assistant Professor of Cardiology, Ain Shams University

Ass. Prof.Rania Samir Ahmed

Assistant Professor of Cardiology, Ain Shams University

Faculty of Medicine

Ain Shams University 2014

Acknowledgment

\$

This work would not have been possible without the continuous support, guidance and feedback provided by both my mentors and colleagues.

Professor Mervat Aboel Maaty-I would like to thank you for encouraging my research. Your advice on my research has been priceless. If it wasn't for your continuous encouragement, I may not have decided to specialize in cardiac imaging.

Ass. Professor Mohamed Amin-I truly appreciate your in depth revision of this work.

Ass. Professor Mazen Tawfik-It was you who had provided me with most of my cases. I thank you for your valued feedback and persistence during the preparation of this work.

Ass. Professor Rania Samir-I greatly appreciate all the positive input you gave me in the editing and finalization of this work.

Thanks are due to **Ass. Professor Ahmed Samir** for helping me in learning the technique at the beginning and **Dr. Azza Katta** for her patient referral and feedback. I also would like to thank **Dr. Shehab Anwer** for the statistical analysis of the data.

I would also like to acknowledge with much appreciation the technical support of Magdi Yacoub Foundation for letting me use their cardiac ultrasound system.

Last, but definitely not least, I would like to thank my parents. To them I owe my life.

Table of contents

Introduction	1
Aim of work	3
Review of literature	4
Chapter 1: Heart failure and dyssynchrony	4
Definition of heart failure	4
Epidemiology of Heart Failure in Egypt	4
Classification of heart failure	5
Electrical activation of the heart	7
Chapter 2: Cardiac resynchronization therapy	14
History and Need of CRT	14
 Mechanisms of Benefit in CRT Responders 	15
Patient Selection for CRT	20
Randomized Clinical Trials for CRT	23
Responders and non-responders to CRT	30
CRT for the prevention of heart failure	35
<u>Chapter 3:</u> Echocardiographic assessment of left	
ventricular mechanical dyssynchrony	38
Echocardiographic assessment of dyssynchrony	39
• Echocardiographic assessment of LV	
intraventricularmechanical dyssynchrony	46
Echocardiography in detecting response to CRT	60

Chapter 4: Using CMR for the assessment of left	-
ventricular mechanical dyssynchrony	65
 Different Cardiac MRI Methods to Assess Dyssynchrony 	65
 Developing an Index to Assess Dyssynchrony by CMR 	73
Patients and methods	76
Results	93
Master table	108
Discussion	110
Conclusions	118
Recommendations	119
Summary	120
References	122
Arabic summary	

List of tables

<u>Table 1:</u> Indications for CRT in Patients in Sinus Rhythm		
Table 2: CRT in randomized clinical trials	26	
Table 3: Principal dyssynchrony indices	61	
Table 4: Baseline patient characteristics	94	
<u>Table 5:</u> Standard LV measurements by both echo and CMR imaging modalities	96	
Table 6: Comparison of the LVEF and LV volumes measured by 2-D and CMR	96	
Table 7: Dyssynchrony indices.	98	
<u>Table 8:</u> Comparison of CURE index to dyssynchrony indices	98	
<u>Table 9:</u> Comparison of BSBL CMR to dyssynchrony indices	99	
Table 10: Correlations of QRS duration to		
dyssynchrony indices	99	
<u>Table 11:</u> Correlations of ECHO Dyssynchrony indices	100	
Table 12: Correlations of CMR to ECHO		
Dyssynchrony indices	101	

List of figures

Figure 1:Panel A: Plot of instantaneous circumferential	
strain at different regions across a short-axis	
section of the mid-LV in a dyssynchronous heart.	
Panel B: Regional elastance (stiffening) plots of	
a dyssynchronous heart. Panel C: Pressure—	
volume loops showing effect of dyssynchrony on	
ESPVR. Panel D: Stress–strain loops from	
early- and late-activated regions in a	
dyssynchronous heart.	11
Figure 2:Pathophysiology of ventricular dyssynchrony	
and proposed mechanisms of action for cardiac	
	16
resynchronization therapy.	
Figure 3: Mechanism of ventricular remodeling due to	19
left bundle branch block.	
Figure 4: Upper image: Pulsed-wave trans-mitral	
inflow in a heart failure patient with LBBB.	
Lower image: After CRT with AV delay	
optimization the E and A waves are well	
separated and diastolic filling time represents	41
44% of cycle length.	41
Figure 5: Optimization of AV delay after CRT by	
pulsed Doppler mitral inflow pattern.	42
	42
Figure 6: Upper image: Diastolic mitral regurgitation	
present in a heart failure patient with LBBB.	
Lower image: Near total disappearance of	
diastolic mitral regurgitation after CRT.	42
	43
Figure 7: Calculation of interventricular mechanical	
delay by standard Doppler method.	45

Figure 8: Routine M-mode at midventricular level	
demonstrating septal to posterior wall delay of	
180 milliseconds, consistent with significant	45
dyssynchrony (≥130msec).	47
Figure 9: Tissue Doppler color M-mode showing septal	
flash which represents early-systolic rapid septal	
thickening and thinning, in a patient with left	
bundle branch block. The septal flash is resolved post CRT.	48
Figure 10: Methodology for measuring pulsed Tissue	
Doppler derived time to peak Sm and time to	
onset Sm (left panel). In the right panel	
measurements of time to peak Sm (upper panel)	
and of time to onset Sm (lower panel) are	50
depicted.	<u> </u>
Figure 11: Methodology of calculation of Dyssynchrony	
Index and is ability in predicting LV inverse	52
remodeling.	
Figure 12: Tissue tracking at the apical 4-chamber view	54
Figure 13: Longitudinal strain-derived dyssynchrony.	56
Figure 14:TSI from the 3 standard apical views	
demonstrating color coding of time to peak	
velocity data from a patient with dyssynchrony.	57
<u>Figure 15:</u> Speckle-tracking images demonstrating	
synchrony in a healthy individual (panel A) and	
severe dyssynchrony in a heart failure patient	59
with LBBB (panel B)	
Figure 16: Myocardial Wall Motion in a Control	
Subject and in a Patient With Heart Failure (A)	
Division of the LV myocardium into slices and	66
segments.	
Figure 17: Derivation of the internal flow fraction.	67

Figure 18: Top right and left panels: Example of LV dyssynchrony assessment in a normal individual	
by VENC. Bottom right and left panels: Example of LV dyssynchrony assessment in a patient.	69
Figure 19: Temporal series of images demonstrating	
MT during systole (upper panels) and diastole	
(lower panels) and (B) an illustration showing the direction of myocardial strains.	71
Figure 20:Comparison of LBBB-HF Dyssynchrony	
Assessment by CURE and LURE	72
Figure 21:Quantification of Circumferential	
Mechanical Dyssynchrony from Myocardial	
Tagging Strain Map.	75
Figure 22: Measurement of LVPEP in patient no. 3.	82
Figure 23: Measurement of RVPEP in patient no. 3.	82
Figure 24:Off-line analysis of the acquired 2-D DTI	
images from each of the apical 4-chamber of	85
patient no. 6.	05
Figure 25: A specially designed template using	
Microsoft Excel 2007 for calculating the	86
different dyssynchrony indices	
Figure 26: CMR coil positioning.	87
Figure 27: Cardiac views	88
Figure 28:In patient no. # 3, a mesh is drawn defining	
the endocardium and epicardium LV short axis	00
myocardial tagging images.	90
Figure 29: The use of velocity encoded (VENC) phase	
in the assessment of LV dyssynchrony in patient	91
no. # 14.	

El 20 Divisio Congo I di	
Figure 30: Distribution of QRS duration among all patients in the study group in milliseconds (the	05
red line represents the mean value).	95
Figure 31:Distribution of patients regarding	
concordance (agreement) of Ts-SD and CURE	102
index	102
Figure 32: SPWMD in patient number 10 (254 msec)	103
Figure 33:Off-line analysis of 2-D DTI images in patient number 24	104
Figure 34: Circumferential strain curve from myocardial	
tagging sequence of patient number 7	
demonstrated dyssynchronous negative strain.	
The CURE index, determined by instantaneous	
circumferential strains at 24 equally spaced	
segments, was 0.71 indicating dyssynchrony.	105
	105
Figure 35: Circumferential strain curve from myocardial	
tagging sequence of patient number 19	
demonstrated dyssynchronous negative strain.	
The CURE index, determined by instantaneous	
circumferential strains at 24 equally spaced	106
segments, was 0.59 indicating dyssynchrony	100
Figure 36: Velocity curves from VENC were the red	
line represents the basal septal wall and the green	
line represents the basal lateral wall patient	
number 18 (BSBL=75msec) indicating	107
dyssynchrony.	107

%	Percentage
(r)	Pearson's correlation coefficient
12SD-ε	12-segment standard deviation of peak longitudinal strain by speckle tracking
2D	Two dimensional
3D	Three dimensional
ACC	American College of Cardiology
АНА	American Heart Association
Am	Myocardial atrial velocity
ANOVA	Analysis of variance
ASE	American Society of Echocardiography
AV	Atrio-ventricular
AVC	Aortic valve closure
AVO	Aortic valve opening
BIVP	Biventricular Pacing
BP	Blood pressure
BSBL	Basal septal to basal lateral

CCS	Clinical composite score
CHF	Chronic heart failure
CMR	Cardiac Magnetic Resonance Imaging
CMR-TSI	CMR tissue synchronization index
CRT	Cardiac resynchronization therapy
CRT-D	CRT with defibrillator function
CRT-P	CRT with pacemaker function
CTm	Contraction time
CURE	Circumferential uniformity ratio estimate
DCM	Dilated cardiomyopathy
DENSE	Displacement Encoding with Stimulated Echoes
DI	Dyssynchrony index
dP/dtmax	Maximal rate of LV systolic pressure rise
DTI	Doppler tissue imaging
ECG	Electrocardiogram
ЕСНО	Echocardiography
EF	Ejection fraction

Em	Myocardial early diastolic velocity
EMT	Electromechanical coupling time
EROA	Effective regurgitant orifice area
ESC	European Society of Cardiology
ESPVR	End-systolic pressure–volume relationship
ESVR	End-systolic volume reduction
GDMT	Guideline-directed medical therapy
GE	General Electric
HF	Heart failure
HFSA	The Heart Failure Society of America
ICD	Implantable cardioverter defibrillator
ICM	Ischemic cardiomyopathy
IFF	Internal flow fraction
IVCD	Intraventricular conduction delay
IVMD	Inter-ventricular mechanical delay
LBB	Left bundle branch
LBBB	Left bundle branch block
LV	Left ventricle

LVEDD	Left ventricular end-diastolic dimension
LVEDV	Left ventricular end-diastolic volume
LVEF	Left ventricular ejection fraction
LVESD	Left ventricular end-systolic dimension
LVESV	Left ventricular end-systolic volume
LVMD	Left ventricular mechanical dyssynchrony
LVP	Left ventricular pacing
LVPEP	Left ventricular pre-ejection period
MHz	Mega Hertz
Ml	Milliliter
MRI	Magnetic Resonance Imaging
Msec	Milliseconds
MT	Myocardial tagging
NYHA	New York Heart Association
RBB	Right bundle branch
RBBB	Right bundle branch block
RTm	Myocardial relaxation time
RV	Right ventricular

RVA	Right ventricular apex
RVPEP	Right ventricular pre-ejection period
S3	Third heart sound
SD	Standard deviation
SDI	Systolic dyssynchrony index
SENC	Strain-encoded
Sm	Myocardial systolic velocity
SPWMD	Septal-to-posterior wall motion delay
SRI	Strain rate imaging
Tmsv	Time to minimal systolic volume
T onset	Difference in mechanical activation between two segments
T peak	Difference in time to peak contraction between two segments
TPS-SD	Standard deviation of the averaged time- to-peak-strain
Ts	Time to peak systolic velocity
Ts-SD	Mechanical dyssynchrony index by Doppler tissue imaging
TSI	Tissue Synchronization Imaging