Role of leptin in development of liver fibrosis in metabolic syndrome with hepatic steatosis

Thesis

Submitted for partial fulfillment of M.D. Degree In Medical Biochemistry

Presented by

RADWA TAHA MOHAMED

MBBCh ,M.Sc (Clinical and Chemical Pathology) M.Sc (Medical Biochemistry)

Supervised by

Prof. Dr. / MOHAMED ALY ABD EL HAFEZ

Professor of Medical Biochemistry Faculty of Medicine Cairo University

Prof. Dr. / ESMAT AHMED SHEBA

Professor of Internal Medicine Faculty of Medicine Cairo University

Prof. Dr. / SAMAR MARZOUK

Ass. Professor of Medical Biochemistry
Faculty of Medicine
Cairo University

Prof. Dr. / SALWA FAYEZ

Ass. Professor of Medical Biochemistry Faculty of Medicine Cairo University

> Faculty of Medicine Cairo University (2011)

<u>Acknowledgment</u>

First and foremost, thanks to ALLAH, who is most beneficent and most merciful I wish to express my sincere thanks and gratitude to Professor Doctor Mohamed Abd El-hafiz Professor of Medical Biochemistry department Faculty of Medicine, Cairo University for his support, valuable help, I had the honor to accomplish my work under the supervision of him.

I also wish to express my deep thanks to Doctor **Olfat Shaker** Professor of Biochemistry Faculty of Medicine, Cairo University for her help in supporting us during molecular biology work.

Also want to thank Doctor **Esmat Shiba** Professor of internal medicine Faculty of Medicine, Cairo University for his support.

And for Doctor **Samar Marzouk**, Ass. Professor of Medical Biochemistry, Faculty of Medicine, Cairo University I am really indebted to her for her kind encouragement during this work, and her valuable support and help.

I like to express my thanks Doctor Salwa Fayez, Ass. Professor of Medical Biochemistry, Faculty of Medicine, Cairo University to for her help.

I like to express my thanks to every one who helped a lot during this work.

Finally,

No words can express my deep thanks and appreciation to my **family** for their continuous support and outstanding encouragement.

Abstract

The study was carried out on 58 patients suffering from NIDDM (18 lean diabetic, 20 obese diabetic, 20 patients with MetS), and 20 healthy age and sex matched controls all patients were subjected to: thorough clinical evaluation, routine laboratory investigation and abdominal ultrasonography.

Key word: ACTH, AMP, ANOVA, syndrome, Biochemistry

Table of Contents

1	Introduction and am of work	1- 2
2	Review- Metabolic Syndrome	3 - 44
3	Review – Adipocytokines	45 - 79
4	Review - cytokines	80 - 91
5	Review - NAFLD	92 – 105
6	Review – Gene polymorphism	106 - 112
7	Subjects and methods	113 – 119
8	Results	120 – 141
9	Discussion	142 – 157
10	Summary	158– 159
11	Conclusion & Recommendations	160
12	References	161- 202
13	Arabic summary	203 - 204

List of Tables

Table	Subject	Page
No.		
(1)	The 1999 WHO definition of metabolic syndrome	4
(2)	The 1999 EGIR definition of metabolic syndrome	4
(3)	The 2001 ATP III definition of metabolic	5
	syndrome	
(4)	Risk factors for diagnosis of metabolic	6
	syndrome.	
(5)	Candidate Genes Associated with Metabolic	10
	Syndrome	
(6)	Causes of IRS-1 serine phosphorylation	27
(7)	Factors that regulate circulating leptin	68
	concentrations in additon to body fat mass	
(8)	Pathological changes in NAFLD.	92
(9)	Biochemical parameters of liver dysfunction	103, 104
(10)	Comparison of NASH with alcoholic liver	104
	disease.	
(11)	Mean and SD of biochemical results among	122
	studied groups	
(12)	Mean and SD of insulin, leptin & IL-6 results	123
	among studied groups.	
(13)	Mean and SD of calculated IR results in the	125
	studied groups	
(14)	Correlations among serum markers result and	128
	biochemical results of studied groups	
(15)	showing Sensitivity, Specificity, PPV and NPV of	130
	different ELISA markers	
(16)	Correlations among Insulin, Leptin, and IL-6	133
	result and calculated IR results of studied groups	
	(n=78)	
(18)	show relationship between serum leptin level and	138
	HOMA-IR values among the studied groups	
(19)	show relationship between serum IL-6 level and	138
	HOMA-IR values among the studied groups	

(20)	shows percentage of mutant and wild gene polymorphism among control and other study groups	139
(21)	Shows the frequency of genotypes and alleles of the analyzed polymorphism in control group and other studied groups	140

List of Figures

No.	Subject	Page
(1)	Proposed pathogenesis of metabolic syndrome	14
(2)	Mechanisms by which visceral obesity linked to the	16
	atherothrombotic inflammatory abnormalities of	
	insulin resistance.	
(3)	Working model illustrating increased ROS	18
	production. in accumulated fat	
(4)	Pathophysiology of ASCVD in the metabolic	20
	syndrome	
(5)	Insulin Action on Myo1C Mediated Movement of	22
	GLUT4.	
(6)	Insulin signaling pathway	23
(7)	Mechanism of mitochondrial dysfunction	26
(8 A)	Inhibition of the metabolic insulin signaling	28
(8 B)	Increased expression of p85 monomer	30
(9)	Causes of insulin resistance	34
(10)	Overflow hypothesis	35
(11)	The effect of fatty acids on insulin signal	36
, ,	transduction pathways	
(12)	Insulin Pathway and its Potential Contribution to	38
, ,	High Salt-Induced Insulin Resistance in Dahl S rats	
(13)	Protective role of adiponectin	49
, ,		
(14)	Action of leptin on the hypothalamus and peripheral	61
, ,	organs	
(15)	Effects of circulating leptin on neuroendocrine axes	65
, ,	and energy homeostasis	
(16)	Role of leptin in immunity	69
(17)	Mechanisms of Leptin Resistance	75
(18)	Leptin resistance and non-leptin resistance tissues	78
(19)	Overview of leptin resistance and hyperleptenemia	79
, ,	in obesity related CVD	
(20)	IL-6 signal transduction	87
(21)	The two modes of IL-6 activation	88
(22)	Feedback regulation in IL-6 signalin	89
(23)	Hematoxylin and eosin staining of different liver	93
	tissue diseases	

No.	Subject	Page
(24)	sources of and mechanisms for the accumulation of fat in	<u>98</u>
	the liver	
(25)	Prevalence of steatosis in various types of	99
	hyperlipidaemia	
(26A)	Carbohydrate (CHO) metabolism in peripheral insulin	101
	resistance and fatty liver	
(26B)	Fat metabolism in peripheral insulin resistance and fatty	102
	liver.	
(27)	Serum fasting insulin concentration among all studied	124
	groups	
(28)	Serum leptin concentration among all studied groups	124
(29)	IL-6 concentration among all studied groups	125
(30)	HOMA- IR among all studied groups	126
(31)	QUICKI among all studied groups	127
(32)	HOMA-β among all studied groups	127
(33)	Significant positive correlation between leptin and BMI in	129
	the studied groups	
(34)	significant positive correlation between IL-6 and FBS in	129
	the studied groups	
(35)	ROC curve for insulin	130
(36)	ROC curve for leptin	131
(37)	ROC curve for IL-6	123
(38)	Correlation between HOMA-IR and insulin in the studied	134
	groups	
(39)	Correlation between QUICKI and insulin in the studied	135
	groups	
(40)	Correlation between QUICKI and HOMA-IR in the	135
	studied groups	
(41)	ROC curve for HOMA-IR	136
(42)	ROC curve for QUICKI	137
(43)	ROC curve for HOMA-β	137
(44)	Percentage of IRS-1 gene among control group	139
(45)	Percentage of IRS-1 gene among cases	140
(46)	Products of IRS-1 gene	141
(47)	Restriction products of IRS-1gene	141
		1

List of abbreviations

β ₂ -AR	β ₂ -adrenergic receptor	
ACAT-1	Acetyl-Coenzyme A acetyl transferase	
ACTH	adrenocorticotropic hormone	
AdipoR1	adiponectin receptors	
ADSF	adipocyte-derived secretory factor	
AHA/NHLBI	American Heart Association/National Heart, Lung, and	
	Blood Institute	
AIDS	acquired immunodeficiency syndrome	
ALT	alanine aminotransferase	
AMP	Adenosine mono phosphate	
AMPK	AMP activated protein kinase	
ANA	Anti nuclear antibody	
ANOVA	analysis of variance	
AP-1	activation protein-1	
AST	Aspartate transaminase	
ATP	Adenosine tri phosphate	
AUC	Area under the curve	
BAT	brown adipose tissue	
<u>BMI</u>	Body Mass Index	
ВР	Blood pressure	
bp	Base pair	
CAD	Coronary Artery Disease	
CART	cocaine-andamphetamine-regulated transcript	
CD	Cluster of differentiation	
CE	Cholesterol esters	
CETP	cholesterol ester transfer protein	
СНО	Carbohydrate	
CI	confidence intervals	
CNS	Central nervous system	
CRH	corticotropin-releasing hormone	
CRP	C- reactive protein	
CVD	Cardiovascular disease	
db/db	Diabetic mice	
DNA	Deoxy ribonucleic acid	
DNL	De novo lipogenesis	
EDTA	Ethylene diamine tetra acetic acid	
EGIR	European Group for study of Insulin Resistance	
ELISA	Enzyme linked immuno sorbent assay	
eNOS	endothelial nitric oxide	

EPO	erythropoietin		
Erk 1	mitogen-activated protein kinases		
ESR	Erythrocyte sedimentation rate		
ET-1	endothelin-1		
fa/fa	Zucker fatty rats		
FBG	Fasting blood glucose		
FC	free cholesterol		
FFAs	Free fatty acids		
FSH	follicle-stimulating hormone		
G-CSF	granulocyte colony-stimulating factor		
GGT	Gamma glutamyl transaminase		
GH	growth hormone		
GI	Gastro intestinal		
Glc	glucose		
GLP-1	glucagons like peptide		
GLUT-4	Glucose Transporter-4		
GN	Gluconeogenesis		
GnRH	gonadotropin-releasing hormone		
HBS Ag	Hepatitis B surface antigen		
HCV Ab	Hepatitis C antibody		
HDL- C	High density lipoprotein- Cholesterol		
HFCS	High Fructose Corn Syrup		
HPG	hypothalamic pituitary gonadal Axis		
HIV	Human immuno deficiency virus		
HLA	Human leucocyte antigen		
НОМА	Homeostatic model assessment		
HGP	Hepatic Glucose Production		
hPGH	human placental growth hormone		
HSL	Hormone-sensitive lipase		
IDF	International Diabetes Federation		
IFG	Impaired fasting glucose		
IFN	interferon		
IGF-1	insulin-like growth factor 1		
IGF-BP	insulin-like growth factor binding protein		
IgG	Immunoglobulin G		
<u>IGT</u>	Impaired Glucose Tolerance		
IL-6	interleukin 6		
iNOS	Inducible nitric oxide synthase		
IP-10	interferon-gamma-inducible protein		
IR	insulin resistance		

IRS-1	Insulin receptor substrate -1		
IVGTT	Intravenous glucose tolerance test		
JAK	Janus kinase JAK		
LAR	leukocyte antigen-related phosphatase		
LDL-C	Low Density lipoprotein- Cholesterol		
LEPR1	Leptin receptor 1		
LFTs	liver function tests		
LH	Leutinizing hormone		
LHRH	Leutinizing hormone releasing hormone		
LIF	leucocyte inhibitory factor		
(LpL	lipoprotein lipase		
LPS	Lipopoly saccharide		
MAP	mitogen-activated protein		
МСН	melanin-concentrating hormone		
MCP-1	monocyte chemotactic protein-1		
MetS	Metabolic Syndrome		
MI	Myocardial infarction		
mRNA	Messenger Ribonucleic Acid		
mTOR	molecular target of rapamycin		
MTP	microsomal transfer protein		
NAD	Nicotinamide Adenine Dinucleotide		
NADPH	Nicotine Amide Dinucleotide Phosphate		
NAFLD	Non-alcoholic fatty liver disease		
NASH	Non-alcoholic steatohepatitis		
NCEPATP	National Cholesterol Education Program—Third Adult		
III	Treatment Panel		
NEFAs	Non-esterified fatty acids;		
NIDDM	Non insulin dependent diabetes mellitus		
NF ĸ	Nuclear Factor kappa		
NPY	neuropeptide Y		
NPY/AgRP	neuropeptideY/Agouti-related peptide		
Ob	leptin gene		
Ob-R	leptin receptor gene		
OGTT	Oral Glucose tolerance testing		
PAI-1	plasminogen activator inhibitor type-1		
PAMPs	pathogen associated molecular patterns		
PBEF	pre-B cell colony-enhancing factor		
PCOS	polycystic ovarian syndrome		
PCR	Polymerase chain reaction		
PGE2	Prostaglandin E2		
PIAS	protein inhibitors of activated STATs		
PI3K	phosphatidylinositol 3-kinase		

PKC	protein kinase C	
POMC	Proopiomelanocortin	
PPAR y	Peroxisome proliferator-activated receptor γ	
PPS	Post prandial blood sugar	
PRRs	pattern recognition receptors	
PTP1B	protein tyrosine phosphatase 1B	
PTPs	protein tyrosine phosphatases	
PUFA	Poly unsaturated fatty acid	
PVN	paraventricular nucleus	
QUICKI	Quantitative Insulin Sensitivity Check Index	
RA	Rheumatoid arthritis	
RBP-4	retinol binding protein-4	
RF	rheumatoid factor	
ROC	Receiver Operating Characteristic	
ROS	Reactive Oxygen species	
RXR	retinoid X receptor	
SAPK	stress activated protein kinase	
SD	Standard deviation	
SGOT	Serum glutamate oxaloacetate transaminase	
SGPT	Serum glutamate pyruvate transaminase	
SH-2	Src-homology-2	
SLIP	serum leptin interacting protein	
SLR	soluble leptin receptor	
SNPs	Single nucleotide polymorphism	
SOCS3	suppressor- of cytokine- signaling-3	
SPSS	Statistical Package for Social Science.	
STATs	Signal Transducers and Activators of Transcription	
T3	triiodothyronine	
T4	thyroxin	
T1DM	Type 1 diabetes mellitus	
T2DM	Type 2 diabetes mellitus	
TAG	Triacyl glycerol	
<u>TG</u>	Triglyceraids	
Th	T helper cells	
TLRs	Toll-like receptors	
TNF- a	Tumor Necrosis Factor- α	
TPO	thrombopoietin	
TRAF-3	tumor necrosis associated factor-3	
TRH	thyroid-releasing hormone	
TSH	thyroid-stimulating hormone	
Tyr	tyrosine	
VCAM-1	Vascular Cell Adhesion Molecule-1.	

VLDL	Very low density lipoprotein
WAT	white adipose tissue
WHO	World Health Organization

Introduction

The Metabolic Syndrome (MetS) is a cluster of cardiovascular risk factors including obesity, hypertension and dyslipidaemia that increases the risk of the development of type 2 diabetes mellitus and cardiovascular disease. The risk factors of MetS include obesity, aging, sedentary lifestyle, diabetes mellitus, coronary heart disease and lipodystrophy. It is estimated that t a large majority of patients with type 2 DM or impaired glucose tolerance have the metabolic syndrome (*Ogbera*, *2010*), recent interest has focused on the possible involvement of insulin resistance as a linking factor (*Alberti*, *et al.*, *2009*)

The insulin resistance is associated with a primary cellular defect in insulin action (insulin resistance) and a compensatory increase in insulin secretion. This combination of insulin resistance and hyperinsulinaemia causes a number of metabolic and cardiovascular changes that result in metabolic syndrome (*Kashyap and Defronzo*, 2007)

The adipose tissue secretes several bioactive mediators that influence inflammation, insulin resistance, diabetes, atherosclerosis and several other pathologic states besides the regulation of body weight. These mediators are mostly proteins and are termed "adipocytokines", The various cell signaling proteins secreted by the mature adipocytes include adiponectin, tumor necrosis factor-α (TNF-α), resistin, retinol binding protein-4 (RBP-4), visfatin, plasminogen activator inhibitor 1 omentin, interleukin-6 (IL-6) leptin, and monocyte chemoattractant protein-1 (MCP-1) (Gandhi, et al., 2010), Although adipocytokines inflammatory factors and different have pathophysiological pathways and targeted tissues and organs, the altered systemic balance of inflammatory factors and adipocytokines may result in MetS (Yu, et al., 2009)

Non-alcoholic fatty liver disease (NAFLD) includes a spectrum of liver pathology ranging from simple steatosis to non-alcoholic steatohepatitis (NASH) (*Charlton*, 2004), NASH is commonly observed in individuals with metabolic syndrome comprising obesity, type-2 diabetes, hyperlipidemia and hypertension (*Marchesini et al*, 2003).

Pathogenesis of NASH most likely involves two steps. the initial event is thought to be insulin resistance, leading to the accumulation of lipids in hepatocytes, and the second step involves increased oxidative stress and production of inflammatory cytokines, resulting in the

-		
Intro	duction	
INLIN	amenon	

hepatocellular injury and subsequent progression of hepatic fibrosis (Neuschwander-Tetri and Caldwell, 2003).

Insulin receptor defects responsible for insulin resistance include reduced insulin-stimulated tyrosine kinase activity, reduced activation of tyrosine phosphorylation of the insulin receptor and of IRS-1, and decreased association of p85 protein and phosphatidylinositol-3-kinase activity with IRS-1(*Kashyap and Defronzo*, 2007)

Aim of the work

The present work is designed to estimate the levels of serum IL-6 and leptin in different clinical groups of diabetes mellitus and metabolic syndrome (MetS) to find possible correlations between the serum levels of them & calculate both HOMA (Homeostatic model assessment) and QUICKI (Quantitative insulin sensitivity check index) as indicator of insulin sensitivity and to find the relation between them and both leptin and IL-6.

To find the relation between the frequency of IRS-1 gene mutation and both diabetes mellitus and metabolic syndrome