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ABSTRACT

The present work deals with the study of relative motion of
a deputy (follower) satellite with respect to a chief (leader)
satellite that both orbit around the same central body (the
Earth) in elliptical or circular orbits. The perturbations due
to Earth oblateness (up to second order in terms of the
oblateness coefficient of the Earth) and atmospheric drag
were taken into account in our study. The relative equations
of motion in the case of circular orbits were represented
using the time as the independent variable. While in the case
of elliptical orbits, the true anomaly of the chief’s satellite is
used as the independent variable of the relative equations of
motion in order to simplify the system of differential

equations that obtained to solve the problem.



SUMMARY

The present work deals with the study of relative motion of
a deputy (follower) satellite with respect to a chief (leader)
satellite that both orbit around the same central body (the
Earth) in elliptical or circular orbits. The perturbations due
to Earth oblateness (up to second order in terms of the
oblateness coefficient of the Earth) and atmospheric drag
were taken into account in our study. The relative equations
of motion in the case of circular orbits were represented
using the time as the independent variable. While in the case
of elliptical orbits, the true anomaly of the chief’s satellite is
used as the independent variable of the relative equations of
motion in order to simplify the system of differential

equations that obtained to solve the problem.
The thesis consists of five chapters:

In chapter one, the relative motion problem of satellites is
introduced, stating the problem statement, applications and
the previous contributions to this problem. Then, the thesis

outlines had been mentioned.



In the second chapter, a review of several basic concepts
from orbital mechanics and mathematics is presented. This
review is brief and only includes what is necessary to give a
complete picture of this problem. It starts with introducing
the definition and transformation between coordinate axes
used in the thesis, then an overview of orbital elements and

different types of time that used in orbital mechanics.

The third chapter had been specified to discuss separately
the perturbations due to Earth oblateness and air drag,
which in turn affect the satellite orbital motion. For that end,
the Lagrangian and Gaussian variation of parameters
techniques are introduced. Also, the rate of change of the
orbital elements due to theses perturbations are derived.
Then, we end this chapter by talking about the satellite life

time.

In the fourth chapter, the equations of relative motion of a
deputy (follower) satellite with respect to a chief (leader)
satellite, that both orbiting the Earth are presented. Here, we
assume that there is no any external forces act on the

satellites except the central attraction force of the



symmetrical spherical model of the Earth, which is known
as the unperturbed case. Then, the derived equations of
motion had been solved using two approaches, which are
the Laplace transformation and the state transition matrix.
In each approach, we consider the case of circular orbits and
the general case of elliptical orbits. At the end of this chapter,

we apply numerical simulations on our solutions.

In chapter five, which is the final chapter, we study the
relative equations of motion again after adding separately
the effect of perturbations due to Earth oblateness and air
drag, showing how these equations and their solutions had
been affected by such perturbations. But, we follow the
Laplace transformation approach only in this chapter. Then,
we apply the solutions on five numerical examples,
considering the circular and elliptical orbits for each
perturbation type. Finally, we talked about some important

conclusions in response to this study.
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CHAPTER (1) INTRODUCTION

1.1. BACK GROUND
The analysis and modelling of the relative motion between
two satellites is of immediate interest to be able to design
and develop multiple satellite missions such as satellite
constellations and formations.

In the study of the relative motion dynamics of two or
more satellites, one of the satellites is generally called the
Chief (or Target satellite), and the others are called the
Deputies (or follower satellites). Consequently, interest
arises in the relative motion of the Deputies with respect to
the Chief, with a reference frame centered on the Chief. The
simplest set of differential equations that model the relative
motion between a Deputy and Chief satellite are the Hill-
Clohessy-Wiltshire (HCW) equations [1, 2]. These are a set
of three, second-order linear differential equations. These
equations, while easy to analyze, do not accurately describe
the system dynamics, due to the assumptions of a circular
reference orbit, linearized differential gravitational

attraction and spherical Earth.



Some of the earlier works on this subject were motivated by
a need to solve the satellite rendezvous problem for near-
circular orbits.

In this thesis we derived the equations of motion of a single
satellite under the influence of the gravitational oblateness
arising from the aspherical property of the Earth, and the
effect of air drag on the orbital elements of the satellite in
low Earth orbit. We then use the Variation of Parameters
(VOP) in the form of Lagrange for the effect of oblateness,
and that of Gauss, for the effect of drag force to derive the
time rates of change for the corresponding orbital elements
in each case. The relative motion of two satellites on
neighboring elliptic orbits were modelled using two
reference coordinate systems, the Earth Centered Inertial
coordinate system (ECI) and the Local Vertical Local
Horizontal coordinate system (LVLH). Then we used
Laplace transform method to solve the system of the
equations of motion. The resulting expressions for relative
position and velocity were plotted and checked for certain
cases to compare with the other results arising from other

researchers.



1.2. APPLICATIONS

Relative motion equations have seen several different
application areas in the history of orbital mechanics. The
first use was by Hill [1] in the late 19% century who was
studying the motion of the Moon. His goal was to construct
a more mathematically sound means of developing tables of
lunar motion, which, at the time, were based on “practical
astronomy rather than of mathematics” in his words.

The first aerospace applications were in the area of intercept
and rendezvous mechanics during the late 1950's and
continuing today. The intercept problem is one in which a
chase vehicle is forced in such a way that its path intersects
the path of a target point (which may be occupied by
another vehicle) at a specified time. The rendezvous
problem further insists that the relative velocity of the two
spacecraft be driven to zero at the time of intersection so that
a docking procedure or other such activities may be
conducted. This problem was studied by Clohessy and
Wiltshire [2] in the interest of developing a guidance scheme
for the rendezvous problem assuming that the target vehicle

was in a circular orbit. This target satellite was to be a control



center issuing relative position and velocity data to the slave
satellites, which then used an on-board propulsion system
to carry out the rendezvous and docking maneuver.
Anthony and Sasaki [3] further studied the rendezvous
problem after developing a higher order approximation of
the relative motion equations. Using these new equations,
the velocity impulse requirements for the rendezvous
maneuver were developed and an analysis of the miss
distance due to the approximation was conducted.

Kelly [4] developed an optimal solution to the two impulse
rendezvous problem using relative motion equations and
also includes the effects of eccentric orbits and gravity
perturbations. A nonlinear model of relative motion was
also given, but an analytical solution was not developed and
so required numerical integration to solve the problem.
More recent applications of relative motion concepts are in
the area of satellite formations. Satellite formations are of
great interest, because it is thought that large numbers of
simple, low efficiency satellites working in a cohesive
fashion can produce better results than a single, high

performance satellite. Such formations can also achieve a



