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ABSTRACT 

The present work deals with the study of relative motion of 

a deputy (follower) satellite with respect to a chief (leader) 

satellite that both orbit around the same central body (the 

Earth) in elliptical or circular orbits. The perturbations due 

to Earth oblateness (up to second order in terms of the 

oblateness coefficient of the Earth) and atmospheric drag 

were taken into account in our study. The relative equations 

of motion in the case of circular orbits were represented 

using the time as the independent variable. While in the case 

of elliptical orbits, the true anomaly of the chief’s satellite is 

used as the independent variable of the relative equations of 

motion in order to simplify the system of differential 

equations that obtained to solve the problem.     
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SUMMARY 

The present work deals with the study of relative motion of 

a deputy (follower) satellite with respect to a chief (leader) 

satellite that both orbit around the same central body (the 

Earth) in elliptical or circular orbits. The perturbations due 

to Earth oblateness (up to second order in terms of the 

oblateness coefficient of the Earth) and atmospheric drag 

were taken into account in our study. The relative equations 

of motion in the case of circular orbits were represented 

using the time as the independent variable. While in the case 

of elliptical orbits, the true anomaly of the chief’s satellite is 

used as the independent variable of the relative equations of 

motion in order to simplify the system of differential 

equations that obtained to solve the problem.  

The thesis consists of five chapters: 

In chapter one, the relative motion problem of satellites is 

introduced, stating the problem statement, applications and 

the previous contributions to this problem. Then, the thesis 

outlines had been mentioned. 
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In the second chapter, a review of several basic concepts 

from orbital mechanics and mathematics is presented. This 

review is brief and only includes what is necessary to give a 

complete picture of this problem. It starts with introducing 

the definition and transformation between coordinate axes 

used in the thesis, then an overview of orbital elements and 

different types of time that used in orbital mechanics. 

The third chapter had been specified to discuss separately 

the perturbations due to Earth oblateness and air drag, 

which in turn affect the satellite orbital motion. For that end, 

the Lagrangian and Gaussian variation of parameters 

techniques are introduced. Also, the rate of change of the 

orbital elements due to theses perturbations are derived. 

Then, we end this chapter by talking about the satellite life 

time. 

In the fourth chapter, the equations of relative motion of a 

deputy (follower) satellite with respect to a chief (leader) 

satellite, that both orbiting the Earth are presented. Here, we 

assume that there is no any external forces act on the 

satellites except the central attraction force of the 
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symmetrical spherical model of the Earth, which is known 

as the unperturbed case. Then, the derived equations of 

motion had been solved using two approaches, which are 

the Laplace transformation and the state transition matrix. 

In each approach, we consider the case of circular orbits and 

the general case of elliptical orbits. At the end of this chapter, 

we apply numerical simulations on our solutions. 

In chapter five, which is the final chapter, we study the 

relative equations of motion again after adding separately 

the effect of perturbations due to Earth oblateness and air 

drag, showing how these equations and their solutions had 

been affected by such perturbations. But, we follow the 

Laplace transformation approach only in this chapter. Then, 

we apply the solutions on five numerical examples, 

considering the circular and elliptical orbits for each 

perturbation type. Finally, we talked about some important 

conclusions in response to this study.
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CHAPTER (1) INTRODUCTION 

1.1. BACK GROUND 

The analysis and modelling of the relative motion between 

two satellites is of immediate interest to be able to design 

and develop multiple satellite missions such as satellite 

constellations and formations.  

In the study of the relative motion dynamics of two or 

more satellites, one of the satellites is generally called the 

Chief (or Target satellite), and the others are called the 

Deputies (or follower satellites). Consequently, interest 

arises in the relative motion of the Deputies with respect to 

the Chief, with a reference frame centered on the Chief. The 

simplest set of differential equations that model the relative 

motion between a Deputy and Chief satellite are the Hill-

Clohessy-Wiltshire (HCW) equations [1, 2]. These are a set 

of three, second-order linear differential equations. These 

equations, while easy to analyze, do not accurately describe 

the system dynamics, due to the assumptions of a circular 

reference orbit, linearized differential gravitational 

attraction and spherical Earth. 
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Some of the earlier works on this subject were motivated by 

a need to solve the satellite rendezvous problem for near-

circular orbits.  

In this thesis we derived the equations of motion of a single 

satellite under the influence of the gravitational oblateness 

arising from the aspherical property of the Earth, and the 

effect of air drag on the orbital elements of the satellite in 

low Earth orbit. We then use the Variation of Parameters 

(VOP) in the form of Lagrange for the effect of oblateness, 

and that of Gauss, for the effect of drag force to derive the 

time rates of change for the corresponding orbital elements 

in each case. The relative motion of two satellites on 

neighboring elliptic orbits were modelled using two 

reference coordinate systems, the Earth Centered Inertial 

coordinate system (ECI) and the Local Vertical Local 

Horizontal coordinate system (LVLH). Then we used 

Laplace transform method to solve the system of the 

equations of motion. The resulting expressions for relative 

position and velocity were plotted and checked for certain 

cases to compare with the other results arising from other 

researchers. 
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1.2. APPLICATIONS 

Relative motion equations have seen several different 

application areas in the history of orbital mechanics. The 

first use was by Hill [1] in the late 19th century who was 

studying the motion of the Moon. His goal was to construct 

a more mathematically sound means of developing tables of 

lunar motion, which, at the time, were based on “practical 

astronomy rather than of mathematics” in his words. 

The first aerospace applications were in the area of intercept 

and rendezvous mechanics during the late 1950’s and 

continuing today. The intercept problem is one in which a 

chase vehicle is forced in such a way that its path intersects 

the path of a target point (which may be occupied by 

another vehicle) at a specified time. The rendezvous 

problem further insists that the relative velocity of the two 

spacecraft be driven to zero at the time of intersection so that 

a docking procedure or other such activities may be 

conducted. This problem was studied by Clohessy and 

Wiltshire [2] in the interest of developing a guidance scheme 

for the rendezvous problem assuming that the target vehicle 

was in a circular orbit. This target satellite was to be a control 
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center issuing relative position and velocity data to the slave 

satellites, which then used an on-board propulsion system 

to carry out the rendezvous and docking maneuver. 

Anthony and Sasaki [3] further studied the rendezvous 

problem after developing a higher order approximation of 

the relative motion equations. Using these new equations, 

the velocity impulse requirements for the rendezvous 

maneuver were developed and an analysis of the miss 

distance due to the approximation was conducted. 

Kelly [4] developed an optimal solution to the two impulse 

rendezvous problem using relative motion equations and 

also includes the effects of eccentric orbits and gravity 

perturbations. A nonlinear model of relative motion was 

also given, but an analytical solution was not developed and 

so required numerical integration to solve the problem. 

More recent applications of relative motion concepts are in 

the area of satellite formations. Satellite formations are of 

great interest, because it is thought that large numbers of 

simple, low efficiency satellites working in a cohesive 

fashion can produce better results than a single, high 

performance satellite. Such formations can also achieve a 


