

Ain Shams University
Faculty of Women for Arts,
Science and Education,
Zoology Department.

Evaluation of Anticancer Activity of Some Venomous Animal Toxins on Human Breast and Colon Cancer Cell Lines

Thesis Submitted for the partial fulfillment for M.Sc. Degree in Zoology by

Salma Ahmed Ali Abdel-Aziz

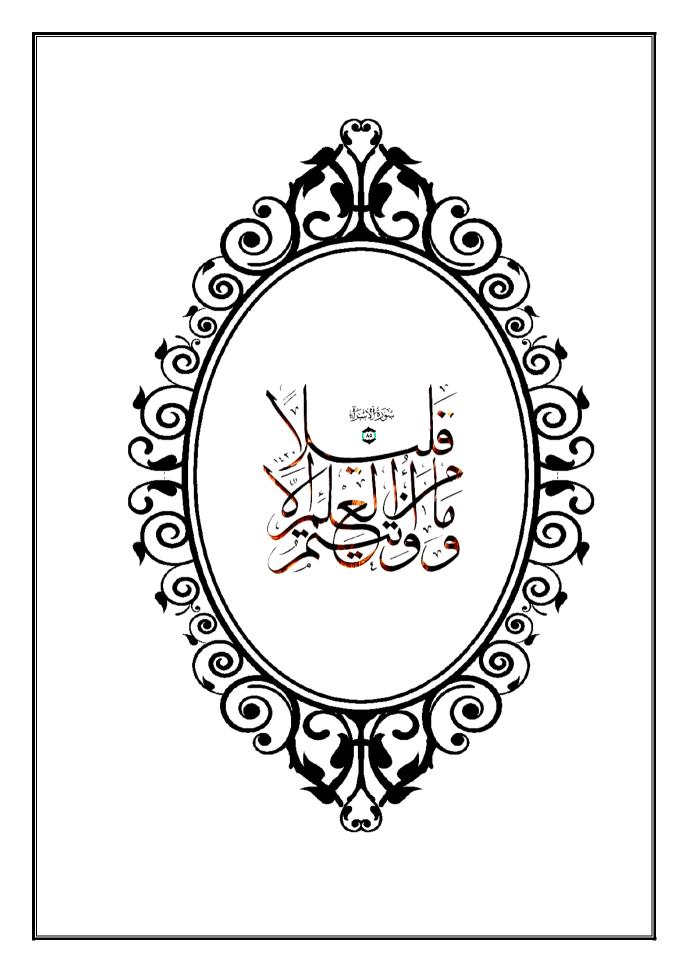
(B.Sc. 2010)

Zoology Department, Faculty of Women for Arts, Science and Education, Ain Shams University (Genetics & Molecular Biology)

Under the supervision of:

Prof. Dr. Ramadan Ahmed Mohamed Ali

Professor of Cytogenetic, Zoology Department, Faculty of Women for Arts, Science and Education, Ain Shams University.


Prof. Dr. Samir Attia Mohamed Zaahkouk

Professor of Physiology, Director of Genetic Engeneering Center & Director of Biological Analysis Institute, Zoology Department, Faculty of Science, Al Azhar University,

Prof. Dr. Aly Fahmy Mohamed

Professor of Virology, Head of R&D Sector, The Holding Company for Production of Vaccines (VACSERA).

(2017)

ACKNOWLEDGEMENTS

After an intensive period of four years, today is the day: writing this note of thanks is the finishing touch on my thesis. It has been a period of intense learning for me, not only in the scientific area, but also on a personal level. Writing this thesis has had a big impact on me. I would like to reflect on the people who have supported and helped me so much throughout this period.

I would first like to thank my merciful Allah for completion of this work. Sincere thanks and gratitude are aimed to acknowledge all those who helped this thesis attain its present form.

I would particularly like to single out my supervisor **Prof. Dr. Ramadan Ahmed Mohamed Ali** professor of cytogenetic, Faculty of girl for science and art, Ain Shams University, I want to thank you for your excellent cooperation and for all of the opportunities I was given to conduct my research and further my thesis. You supported me greatly and were always willing to help me.

I would like to express my cardinal thanks and my appreciation to **Prof. Dr. Samir Attia Mohamed Zaahkouk** professor of physiology, Director of Genetic Engeneering Center & Director of Biological Analysis Institute, Faculty of science, Al Azhar University, for his kind supervision, encouragement and checking the final manuscript.

In addition, I would like to thank my professor **Aly Fahmy Mohamed** Head of R&D sector, Holding Company for Biological Products and Vaccines (VACSERA), for their valuable guidance. You definitely provided me with the tools

that I needed to choose the right direction and successfully complete my thesis.

I would also like to thank my parents for their wise counsel and sympathetic ear. You are always there for me. Finally, there are my friends. We were not only able to support each other by deliberating over our problems and findings, but also happily by talking about things other than just our papers.

Thank you very much, everyone!

Salma Ahmed Ali Abdel-Aziz

Conte	Contents	
List of	Abbreviations Tables Figures	I III V
Abstra	act	1
	uction and Aim of the Work	3
	w of Literature	6
1.	Cancer	6
1.1.	Classification of cancer	6
1.2.	Stages of cancer	7
1.3.	Cancer statistics	8
1.4.	Cancer risks	12
2.	Breast cancer	24
2.1.	Normal female breast	24
2.2.	Incidence and survival	25
2.3.	Staging	26
2.4.	Breast cancer risk factors	36
2.5.	Types of Breast Cancer	39
2.6.	Screening and diagnostic tests	43
2.7.	Treatment	47
3.	Colon cancer	51
3.1.	Normal colon	51
3.2.	Incidence and survival	52
3.3.	Staging of colon cancer	53
3.4.	Colon cancer risk factors	62
3.5.	Colon cancer symptoms	64
3.6.	Screening and diagnostic tests	65
3.7.	Treatment	66
4.	5-Fluorouracil (5-FU)	67
4.1.	Structure	67
4.2.	Mechanism of action	69
4.3.	Effect of 5-FU on gene expression	73
4.4.	Breast and colon cancers and 5-FU	74
4.5.	Dosage and clinical pharmacokinetics	75
5.	Venoms	76

5.1.	Snake venom
5.1.1.	Chemical components of snake venom
5.1.2.	The medical uses of snake venom
5.1.2.1.	Anticancer
5.1.2.2.	Antimicrobial
5.1.2.3.	Antiviral
5.1.3.	Safety
5.1.4.	Egyptian copra Naja haje venom
5.2.	Scorpion venom
5.2.1.	Chemical components of scorpion venom
5.2.2.	The medical uses of scorpion venom
5.2.2.1.	Anticancer
5.2.2.2.	Antimicrobial
5.2.2.3.	Antiviral
5.2.3.	Safety
5.2.4.	The deathstalker Leiurus quinquestriatus
	venom
5.3.	Bee venom
5.3.1.	Chemical components of bee venom
5.3.2.	History
5.3.3.	The medical uses of bee venom
5.3.3.1.	Anticancer
5.3.3.2.	Antimicrobial
5.3.3.3.	Antiviral
5.3.4.	Safety
5.3.5.	Egyptian bee Apis mellifera venom
6.	Oxidant/Antioxidant system
6.1.	Lipid peroxidation
6.1.1.	lipid peroxidation formation
6.1.2.	Lipid peroxidation and cancer
6.1.3.	Lipid peroxidation and apoptosis
6.2.	Nitric oxide (NO)
6.2.1.	Nitric oxide structure and mechanism of
	action
6.2.2.	Nitric oxide and cancer
6.2.3.	Nitric oxide and apoptosis

6.3.	Glutathione	102
6.3.1.	Glutathione structure and function	102
6.3.2.	Glutathione and cancer	103
6.3.3.	Glutathione and apoptosis	104
7.	Programmed cell death (Apoptosis)	105
7.1.	Apoptosis pathways	106
7.2.	Apoptosis in cancer	109
7.3.	Apoptosis related genes	109
7.3.1.	P53 gene	109
7.3.1.1.	Structure of p53	110
7.3.1.2.	The relation between P53 and cancer	111
7.3.1.3.	Mechanism of action and function of p53	111
7.3.2.	Bax gene	113
7.3.2.1.	Structure of Bax	113
7.3.2.2.	Mechanism of action and function of Bax	113
7.3.2.3.	The role of P53 and Bax in apoptosis	115
7.3.3.	Bcl-2 gene	117
7.3.3.1.	Structure of Bcl-2	118
7.3.3.2.	The relation between Bcl-2 and cancer	118
7.3.3.3.	Mechanism of action and function of Bcl-2	119
Material	s and Method	120
1.	Materials used	120
2.	Subculturing of cell lines	122
3.	Cell counting	125
4.	Cytotoxicity testing (SRB)	127
5.	Biochemical evaluation	129
5.1.	Preparation of samples	129
5.2.	Oxidative stress markers	129
5.2.1.	Determination of Malondialdhyde (MDA)	
	Concentration	129
5.2.2.	Determination of nitric oxide (NO) level	131
5.3.	Antioxidative enzymes	133
5.3.1.	Determination of reduced glutathione (GSH)	
	Content	133
6.	Molecular evaluation (RT-PCR)	135
6.1.	Total RNA isolation	135

6.2.	cDNA synthesis	137
6.3.	PCR amplification	140
7.	Statistical analysis	142
Result	S	143
Discus	ssion	187
Englis	h Summary	199
	ences	202
Arabi	c Abstract	Í
Arabi	c Summary	ح

List of Abbreviation

List of Abbreviations:

Abbreviation Meaning

5-FU: 5-Fluorouracil (anti-cancer drug)

ATL: Adult T-cell Leukemia

BMI: Body Mass Index

BSE: Breast Self Examination

CA: Cancer Antigen

CIS: Carcinoma In Situ

DCIS: Ductal Carcinoma In Situ

DNA: DeoxyriboNucleic Acid

DR: Death Receptors

ECM: Extra Cellular Matrix

FAP: Familial Adenomatous Polyposis

FOBT: Fecal Occult Blood Testing

h: hours

HBV: Hepatitis B Virus

HCV: Hepatitis C Virus

HER2: Human Epidermal growth factor

Receptor-2

HIV: Human Immunodeficiency Virus

HPV: Human Papilloma Viruse

HRT: Hormone Replacement Therapy

HTLV: Human T-cell Leukemia Virus

List of Abbreviation

IAP: Inhibitor of Apoptosis Proteins

IARC: International Agency for Research on

Cancer

IBC: Inflammatory Breast Cancer

IC₅₀: The Half Maximal Inhibitory

Concentration

IDC: Invasive or Infiltrating Ductal Carcinoma

IGF: Insulin-like Growth Factor

IHC: ImmunoHistoChemistry

ILC: Invasive or Infiltrating Lobular

Carcinoma

LAAOs: L-Amino Oxidases

LCIS: Lobular Carcinoma In Situ

LOOH: Lipid Hydro peroxide

MC: Mucinous Carcinoma

MRI: Magnetic Resonance Imaging

NO: Nitric Oxide

NOS: Nitric Oxide Synthesis

PLA2: Phospholipases A2

PUFA: Poly Unsaturated Fatty Acids

ROS: Reactive Oxygen Species

TAF: Tumor Angiogenic Factor

TNM: Tumor Node Metastasis

List of Tables

List of Tables:

Table no.	Title P
Table 1:	TNM system of cancer staging 28
Table 2:	Medicinal application of venoms and
	toxins 7"
Table 3:	The snake venom anticancer properties 83
Table 4:	The snake venom antimicrobial
	properties 83
Table 5:	The snake venom antiviral properties 8 ⁴
Table 6:	The scorpion venom anticancer
	properties 88
Table 7:	The scorpion venom antimicrobial
	properties 89
Table 8:	The scorpion venom antiviral
	properties 90
Гable 9:	The bee venom anticancer properties 94
Table 10:	The bee venom antimicrobial
	properties 95
Гable 11:	The bee venom antiviral properties 90
Гable 12:	Genomic DNA elimination reaction
	components Component 13
Гable 13:	Reverse-transcription reaction
	components 1.
Гable 14:	_
Гable 15:	Primers used in RT-PCR assay 14
Гable 16:	Cycling conditions 14
	The viability of MCF-7 cells post
	treatment with different concentrations
	of venoms 14
Table 18:	The percentage viability of MCF-7 14

List of Tables

Table 19:	The viability of Caco-2 cells post
	treatment with different concentrations
	of venoms 146
Table 20:	The percentage viability of Caco-2 146
Table 21:	The IC50 values of 5-FU, Naja h.,
	Leiurus q. and Apis m. venoms 149
Table 22:	The level of oxidative stress biomarker
	(MDA) in MCF-7 cells 153
Table 23:	The level of oxidative stress biomarker
	(MDA) in Caco-2 cells 154
Table 24:	The level of oxidative stress biomarker
	(MDA) in MCF-7 media 156
Table 25:	The level of oxidative stress biomarker
	(MDA) in Caco-2 media 157
Table 26:	The level of Nitrosative stress marker
	(NO) in MCF-7 cells 159
Table 27:	The level of Nitrosative stress marker
	(NO) in Caco-2 cells 160
Table 28:	The level of Nitrosative stress marker
	(NO) in MCF-7 media 162
Table 29:	The level of Nitrosative stress marker
	(NO) in Caco-2 media 163
Table 30:	The level of antioxidant marker (GSH)
	in MCF-7 cells 165
Table 31:	
	in Caco-2 cells 166
Table 32:	The level of antioxidant marker (GSH)
	in MCF-7 media 168
Table 33:	The level of antioxidant marker (GSH)
	in Caco-2 media 169

List of Figures

List of Figures:

Figure no.	Title	Page
Figure 1:	The stages of angiogenesis in the	
	development of tumor growth	8
Figure 2:	Estimated new cancer cases and deaths	
	worldwide for leading cancer types by	
	the level of economic development	10
Figure 3:	Estimated cancer types in Egyptian	
	males	11
Figure 4:	Estimated cancer types in Egyptian	
	females	11
Figure 5:	Estimated new cancer cases and deaths	
	in Egypt for cancer sites	12
Figure 6:	Cancer risks are divided into two broad	
	categories internal factors and	
	environmental factors	13
Figure 7:	Genes associated with risk of different	
	cancers	14
Figure 8:	Various cancers that have been linked	
	to inflammation	15
Figure 9:	Low physical activity and overweight	
	links with cancer risk	18
Figure 10:	Various cancers that have been linked	
	to infection	21
Figure 11:	Various cancers that have been linked	
	to environmental carcinogens	23
Figure 12:	This is a pictorial presentation of the	
	normal breast	24
Figure 13:	Breast cancer staging according to the	
	TNM system	30

List of Figures

Figure 14:	The large intestine shown in anterior
-	view
Figure 15:	A cross section of a normal intestinal
	tissue
Figure 16:	Colorectal cancer staging
Figure 17:	Structure of 5-fluorouracil
Figure 18:	Metabolism of 5-FU
Figure 19:	Inhibition of TS by 5-FU
Figure 20:	The chemical structure of
	Phospholipases A2
Figure 21:	Mechanism of hydrolysis catalyzed by
	PLA2
Figure 22:	Naja haje snake
Figure 23:	Chlorotoxin molecular structure and the
	mechanism of action
Figure 24:	Leiurus quinquestriatus scorpion
Figure 25:	Melittin structure
Figure 26:	Apis mellifera bee
Figure 27:	Lipid peroxidation formation
Figure 28:	Structure of NO or nitric oxide
Figure 29:	Nitric oxide production pathway
Figure 30:	Structure of GSH
Figure 31:	The morphological pathways of
	apoptosis and necrosis
Figure 32:	The pathways of extrinsic and intrinsic
-	apoptosis
Figure 33:	P53 protein structure
Figure 34:	Bax protein structure
Figure 35:	Bax protein activation
Figure 36:	Mechanism of action of apoptosis
_	activation by p53 and BAX

List of Figures

Figure 37:	Apoptosome formation
Figure 38:	The Bcl-2 gene location
Figure 39:	0.22 μM Syring filter
Figure 40:	5-FU ampoule
Figure 41:	Steri-cycle CO ₂ incubator
Figure 42:	Biological safety cabinet
Figure 43:	Inverted microscope
Figure 44:	Disposable sterile plastic pipettes
Figure 45:	Scheme for PCR cycle using two
O	different primers
Figure 46:	Surviving fraction curve of MCF-7
-	cells
Figure 47:	Surviving fraction curve of Caco-2
	cells
Figure 48:	A photograph shows the effect of IC50
	concentration of venoms and 5-FU
Figure 49:	A photograph shows the effect of IC50
	concentration of venoms and 5-FU
Figure 50:	Bar diagram showing the levels of
	MDA in the MCF-7 and Caco-2 cells
Figure 51:	Bar diagram showing the levels of
	MDA in the MCF-7 and Caco-2
	media
Figure 52:	Bar diagram showing the levels of NO
	in the MCF-7 and Caco-2 cells
Figure 53:	Bar diagram showing the levels of NO
	in the MCF-7 and Caco-2 media
Figure 54:	Bar diagram showing the levels of GSH
	in the MCF-7 and Caco-2 cells
Figure 55:	Bar diagram showing the levels of GSH
	in the MCF-7 and Caco-2 media