

Seizures in critically ill pediatric patients

Protocol of essay Submitted for Partial Fulfillment of Master degree in Intensive Care

By

Sobhy Ali Ali Elnafad

M.B.B.CH (2008)

Supervised by

Prof.Dr. Alaa Eid Mohamed

Professor of Anesthesia, Intensive

Care and Pain Management

Faculty of Medicine-Ain Shams University

Dr. Assem Adel Moharram

Lecturer of Anesthesia, Intensive

Care and Pain Management

Faculty of medicine - Ain Shams University

Dr. Reham Mustafa Hashim

Lecturer of Anesthesia, Intensive

Care and Pain Management

Faculty of Medicine - Ain Shams University

Faculty of Medicine - Ain Shams University 2015

النوبات العصبية في مرضي الأطفال ذوي الحالات الحرجة

رسالة مقاليه مقدمة للحصول علي درجة الماجستير في الرعاية المركزة

إعداد

صبحی علی علی النفاض

بكالوريوس الطب والجراحة

كلية طبع الأسكندرية - جامعة الأسكندرية

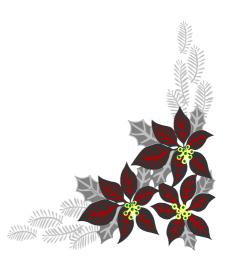
تمس إشراف أد. علاء عيد محمد

أستاذ التحدير والرعاية المركزة وعلاج الألو كلية الطبع – جامعة عين شمس

د. عاصم عادل محرم

مدرس التخدير والرعاية المركزة وعلاج الألو كلية الطبع - جامعة عين شمس

د. ریهام مصطفی هاشم


مدرس التخدير والرعاية المركزة وعلاج الألم كلية الطبم – جامعة عين شمس

كلية الطب ـ جامعة عين شمس

"قَالُوا سُبْحَانَكَ لا عِلْمَ لَنَا إِلَّا مَا عَلَّمْتَنَا إِنَّكَ أَنْتَ الْعَلِيمُ مَا عَلَّمْتَنَا إِنَّكَ أَنْتَ الْعَلِيمُ الْحَكِيمُ" الْحَكِيمُ"

Acknowledgement

First and foremost thanks to "ALLAH," the most merciful to whom I relate any success in my life.

Iam delighted to express my sincere appreciation to Dr. Alaa Eid Mohamed, Professor of Anesthesia, Intensive Care and Pain Management, Faculty of Medicine, Ain Shams University, for his constant help, instructive supervision and valuable guidance.

My sincere thanks to Dr. Assem Adel Moharam, Lecturer of Anesthesia, Intensive Care and Pain Management, Faculty of Medicine, Ain Shams University, for his expert advice, his kind supervision, great help, the time and effort he generously gave me.

My sincere thanks to Dr. Reham Mustafa Hashim, Lecturer of Anesthesia, Intensive Care and Pain Management, Faculty of Medicine, Ain Shams University, for his unlimited help, his continuous guidance and encouragement throughout this study.

I would like to express my hearty thanks to my family and my colleagues, for their support, understanding and tolerance till this work was completed.

Sobhy Ali Ali Elnafad

Abbreviation

Abbreviation	Meaning
AMPA	a-amino-3-hydroxy-5-methyl-isoxazolopropionic acid
ARS	Acute repetitive seizure
AED	Antiepileptic drug
ARAS	Ascending reticular activating system
BBB	Blood brain barrier
BZD	Benzodiazepines
BOLD	Blood-oxygen-level-dependent
CNS	Central nervous system
CBF	Cerebral blood flow
CBV	Cerebral blood volume
CMRO2	Cerebral metabolic rate for oxygen
СРР	Cerebral perfusion pressure
CSE	Convulsive Status epilepticus
CSF	Cerebrospinal fluid
DNA	Deoxyribonucleic Acid
EEG	Electroencephalography
EPC	Epilepsia partialis continua
ESES	Electrical status epilepticus in slow wave sleep
FDG	Fluoro Deoxy Glucose
fMRI	functional Magnetic Resonance Imaging
GABA	Gama amino butyric acid
GCSE	Generalized convulsive status epilepticus
GLT1	Glutamate transporter 1
HHV- B6	Human herpesvirus 6B

Abbreviations

ICP Intracranial pressure

ILAE International League Against Epilepsy

IV Intravenous

IM IntramuscularKD Ketogenic diet

kPa Kilopascal

MAP Mean arterial pressure

mGluR Metabotropic glutamate receptors

NCS Non-convulsive seizures

NCSE Non-convulsive status epilepticus

NF1 Neurofibromatosis type
NMDA N-methyl-D-aspartic acid

PaCO2 Partial pressure of carbon dioxide in arterial blood

PaO2 Partial pressure of oxygen in arterial blood

PDH Pyruvate dehydrogenase

PET positron emission tomography

PICU Pediatric Intensive Care Unit

PNS Peripheral nervous system

REM sleep Rapid eye movement sleep

RSE Refractory status epilepticus

SPECT Single-photon emission computed tomography

SE Status epilepticus

TSC1 Tuberous sclerosis complex 1

TSC2 Tuberous sclerosis complex 2

List of figures

Figure number	Page number
Figure 1: Human brain	4
Figure 2: Thalamus site	6
Figure 3: Human brain, showing how the cortex has expanded	9
Figure 4: Amygdala	10
Figure 5: Basal ganglia	11
Figure 6: Hippocampus	12
Figure 7: Monro–Kellie homeostasis	17
Figure 8: Cerebral autoregulation	19
Figure 9: Proposed mechanisms for the coupling of blood flow	24
Figure 10: Excitatory synapse in the CNS	28
Figure 11a: Extracellular sites for drug action within the NMDAR	29
Figure 11b: Intracellular targets for drug action within the NMDAR	30
Figure 12: Structure of AMPAR and its direct interacting proteins	30
Figure 13: Representation of the major isoform of GABA _A receptors	32
Figure 14: seizure generation mechanism	56
Figure 15: Facial angiofibromas	69
Figure 16: Shagreen patch on dorsolumbar area	69
Figure 17: Sturge Weber syndrome	70
Figure 18: Café-au-lait macules	70
Figure 19: Lisch nodules	71
Figure 20: EEG rhythms according to frequency	73
Figure 21: Ictal and interictal brain SPECT scan	83
Figure 22: Algorithm for evaluation of seizures in pediatrics	87
Figure 23: The stages of treatment of SE	96
Figure 23: Algorithm for surgical interventions in RSE	116

list of Tables

Table number	Page number
Table 1: hypoperfusion and critical cerebral blood flow	20
Table 2: CBF and correlation with cerebral ischemia	20
Table 3: Conceptual definition of seizure and epilepsy	37
Table 4: Operational (practical) clinical definition of epilepsy	38
Table 5: Classification of seizures	39
Table 6: Comparison of major changes between old and new	41- 43
terminology of seizures	
Table 7: Descriptors of focal seizures according to degree of	44
conscious level impairment during seizure	
Table 8: Classification of SE according to semiology	50
Table 9: SE in selected electroclinical syndromes according to	53
age	
Table 10: Classification of febrile seizures	54
Table 11: Etiology of Seizures and SE in the ICU	59
Table 12: Common presentation of seizures in the ICU	62
Table 13: Critical Historical Elements in a Child with Possible	65
First Seizure	
Table 14: Nonepileptic events in neonates and infants	66
Table 15: Common Non-Epileptic Events in the Differential	67
Diagnosis of Paroxysmal Event	
Table 16: clinical diagnostic criteria for tuberous sclerosis	68
Table 17: parenteral BZD doses	97
Table 18: Treatment of non-convulsive SE	113

Content

- 1. Aim of the essay.
- 2. Introduction.
- 3. Chapter 1: Physiological and anatomical consideration in the brain.
- 4. Chapter 2: Definition, classification and pathophysiology of seizures in critically ill pediatric patients.
- 5. Chapter 3: Evaluation of seizures in critically ill pediatric patients.
- 6. Chapter 4: Management of seizures in critically ill pediatric patients.
- 7. Summary.
- 8. References.
- 9. Arabic summary.

Introduction

Seizure is a transient occurrence of signs and/or symptoms due to abnormal excessive or synchronous neuronal activity in the brain while; epilepsy is a disorder of the brain characterized by an enduring predisposition to generate epileptic seizures, and by the neurobiological, cognitive, psychological, and social consequences of this condition. The definition of epilepsy requires the occurrence of at least one epileptic seizure (*Fisher et al., 2014*).

Seizures occur in critically ill children in various conditions. In all situations, it is crucial to identify potential causes or contributors, particularly reversible factors, such as metabolic disturbances, fever, hypoxia, and medications. For SE, it is imperative to begin treatment as soon as possible and to treat until success is verified with EEG or the patient returns to normal mental status. Nonconvulsive seizures are underdiagnosed. Most seizures in critically ill children are nonconvulsive and can be detected only with EEG monitoring (*Khaled and Hirsch*, 2008).

The potential anti-epileptic drugs (AED) complications have changed the approach to treatment to one in which each child who presents with a first seizure receives a risk-benefit assessment to weigh the benefits of treatment, including lowering seizure recurrence and decreasing long-term consequences of epilepsy, against the adverse effects of AED treatment (*Chelse et al.*, 2013).

Aim of the essay

The aim of the essay is to discuss the critically ill pediatric patients and to define, classify and manage seizures in them.

Introduction

Seizure is a transient occurrence of signs and/or symptoms due to abnormal excessive or synchronous neuronal activity in the brain while; epilepsy is a disorder of the brain characterized by an enduring predisposition to generate epileptic seizures, and by the neurobiological, cognitive, psychological, and social consequences of this condition. The definition of epilepsy requires the occurrence of at least one epileptic seizure (*Fisher et al., 2014*).

Seizures occur in critically ill children in various conditions. In all situations, it is crucial to identify potential causes or contributors, particularly reversible factors, such as metabolic disturbances, fever, hypoxia, and medications. For SE, it is imperative to begin treatment as soon as possible and to treat until success is verified with EEG or the patient returns to normal mental status. Nonconvulsive seizures are underdiagnosed. Most seizures in critically ill children are nonconvulsive and can be detected only with EEG monitoring (*Khaled and Hirsch*, 2008).

The potential anti-epileptic drugs (AED) complications have changed the approach to treatment to one in which each child who presents with a first seizure receives a risk-benefit assessment to weigh the benefits of treatment, including lowering seizure recurrence and decreasing long-term consequences of epilepsy, against the adverse effects of AED treatment (*Chelse et al.*, 2013).

Anatomical and Physiological consideration in the brain

The nervous system contains a central nervous system (CNS) and the peripheral nervous system (PNS). CNS consist of the brain and the spinal cord which taking in afferent and sensitive information and providing efferent somatic or visceral responses along with the nerves long cords that form the peripheral nervous system (PNS) that establish the connection between the CNS and the rest of the body (*Olivetti*, 2015).

Gross Anatomy:

The Brain Stem: brain stem links the spinal cord to the brain. It deals with advanced involuntary human functions as breathing, blood pressure, and heart rate, digestion; controls a lot of reflex motor actions. The brain stem contains the reticular system, which is necessary for consciousness and have a major role in arousal (being wakeful and aware). The brain stem obtains many types of sensory input and 'preprocesses' it then sends it on to higher brain parts. The highest segment of the brain-stem is termed the pons (bridge) (Figure 1); then, the first major structure is the medulla oblongata where, some cranial nerves exit and enter the CNS (Blumenfeld, 2011).