STUDY OF MICROBIOLOGICAL HAZARDS IN RAW MILK CHEESE AND APPLICATION OF HAZARD ANALYSIS AND CRITICAL CONTROL POINTS (HACCP) SYSTEM

By

MAHA FAWZY LOTFY MOHAMED

B.Sc. Agric. Sc. (Biotechnology), Ain Shams University, 2013

A Thesis Submitted in Partial Fulfillment Of

The Requirements for the Degree of

MASTER OF SCIENCE in

Agricultural Sciences (Agricultural Microbiology)

Department of Agricultural Microbiology Faculty of Agriculture Ain Shams University

Approval Sheet

STUDY OF MICROBIOLOGICAL HAZARDS IN RAW MILK CHEESE AND APPLICATION OF HAZARD ANALYSIS AND CRITICAL CONTROL POINTS (HACCP) SYSTEM

By

MAHA FAWZY LOTFY MOHAMED

B.Sc. Agric. Sc. (Biotechnology), Ain Shams University, 2013

This thesis for M. Sc. degree has been appro	oved by:
Dr. Rashed Abdel Fattah Zaghloul Prof. of Microbiology, Faculty of Agricul	ture, Benha University.
Dr. Mona Mansour Mahmoud Oraby Prof. of Microbiology, Faculty of A University.	Agriculture, Ain Shams
Dr. Enas Abdel El Tawab Hassan Prof. of Microbiology, Faculty of Agricul University.	ture, Ain Shams
Dr. Azhar Abdel Fattah EL Sayed Prof. Emeritus of Microbiology, Facu Shams University.	lty of Agriculture, Ain

Date of Examination: 10/10/2017

STUDY OF MICROBIOLOGICAL HAZARDS IN RAW MILK CHEESE AND APPLICATION OF HAZARD ANALYSIS AND CRITICAL CONTROL POINTS (HACCP) SYSTEM

By

MAHA FAWZY LOTFY MOHAMED

B.Sc. Agric. Sc. (Biotechnology), Ain Shams University, 2013

Under the supervision of:

Dr. Azhar Abdel Fattah EL Sayed

Prof. Emeritus of Microbiology, Department of Agricultural Microbiology, Faculty of Agriculture, Ain Shams University (Principal Supervisor).

Dr. Enas Abdel El Tawab Hassan

Prof. of Microbiology, Department of Agricultural Microbiology, Faculty of Agriculture, Ain Shams University.

Dr. Osman Abdel Aleem Abdel Latif

Associate Prof. of Food Science, Department of Agriculture Food Science, Faculty of Agriculture, Ain Shams university.

ABSTRACT

Maha Fawzy Lotfy Mohamed. Study of Microbiological Hazards in Raw Milk Cheese and Application of Hazard Analysis Critical Control Points (HACCP) System. Unpublished M.Sc. Thesis, Department of Agricultural Microbiological, Faculty of Agriculture, Ain Shams University, 2017

Domaiti cheese is the most popular soft white pickled cheese in Egypt. The objective of this study asses and improve the microbiological hazards, physiochemical quality and safety of some raw milk Domiati cheese produced by small traditional dairy plants in Egypt through application of HACCP system. Different Domiati cheese varieties were sampled from Cairo retails. The cheese varieties (raw and pasteurized milk) included Double cream, Tallaga, Baramely, Istanbully and Feta cheeses. Results indicated that raw milk soft white cheese samples were highly contaminated, having microbial load exceeding the acceptable limits. Total lactic acid bacteria and fecal E. coli were high counts in Double cream cheese (12.9x 10³ and 4.1 x10² cfu/g, respectively). Total bacterial count, Staphylococcus sp. and yeast & molds were high counts in Tallaga cheese (9.2 x10⁵, 13.0 x10⁴ and 9.0x10³ cfu/g, respectively). Tallaga, Baramely and Double cream were contaminated with some pathogenic bacteria, while Istanbully cheese was free of pathogens. Also, results showed that pasteurized soft white cheeses were absence of lactic acid bacteria (LAB). Pasteurized cheeses were free of pathogens. Also, coliforms and fecal E. coli were not detected in pasteurized cheeses. The present study showed that the pasteurized cheeses were low contaminated of bacteria and yeast & molds compared to traditional cheeses. Moreover, results showed that fat content was high in pasteurized cheeses compared to traditional cheese samples. Protein content in pasteurized cheese were blow standard, these results are relatively low when compared to protein content in traditional cheese, which ranged from 9-12%. Total solid, ash, NaCl and EC were low compared to traditional cheeses, while acidity was high in pasteurized cheeses compared to traditional cheeses. Results observed that some preservatives agents was found in pasteurized cheeses produced by modern dairy plants in Egypt. Nisin as a preservative agent used in modern dairy plant.

Data in hazard analysis and critical control points (HACCP) system in dairy plant at Damietta Governorate showed that the all materials were high microbial load and contaminated with some pathogens. The count of Lactic acid bacteria (LAB) in raw milk (10.9x10⁴ cfu/ml), decrease during the different steps of cheese processing from salting to ripening (8.30×10^2) and 2.16×10^2 cfu/g, respectively). The same trends were observed for total count with numbers (9.5x10⁶ cfu/g in ripened cheese). Regarding the other hygiene indicator microorganisms (coliforms, fecal E coli and Staphylococcus sp.) decreased during cheese processing. Results obtained that all pathogens were not detected of ripened cheese. Unhygienic conditions for the air and contact surfaces for the chain production line. The physiochemical characteristics of raw materials, in process, final cheese and by product (whey) showed that total solids in raw milk was 12.40 %. Total solids increased during cheese process up to a maximum in ripened cheese (42.60 %). pH value in raw milk was 6.0, then decrease in fresh and ripened cheese (4.10 and 3.91, respectively) while, acidity increased in ripened cheese (0.98%). The salt content was (12.74%) in ripened cheese. Results showed four critical control points (CCPs) were found in the production in this cheese plant. They are receiving milk, heating and salting of milk, renneting, packaging and ripening (storage).

Validation of HACCP plan for production of Tallaga raw milk soft white cheese to improve the microbiological hazards, quality and safety of Tallaga cheese. HACCP plan was implemented to validate and control *Staphylococcus* sp., *Salmonella* sp. and *Listeria* sp. in Tallaga cheese manufactured with different salt levels (6, 8 to 10 % salt), mesophilic & thermophilic lactic acid bacteria and ripening for 90 day at 5°C. The

results indicate an increase in thermophilic and mesophilic LAB counts during the ripening storage, the counts were at maximum by the end of ripening period (90 day) in different salt levels. Also, results observed that both counts of Staphylococcus sp., coliform bacteria and yeast & molds were decreased in cheese manufactured made by LAB, 8% and 10 % salt compared to 6 % salt (with and without LAB) and control treatment during the ripening period for 90 day at 5°C. The fully reduction of Listeria sp. and Salmonella sp. in Tallaga cheese manufactured with salt levels (8%,10% salt), mesophilic and thermophilic LAB after repining period 90 day at 5°C comparing to without LAB and control treatment. Data show that, during ripening the pH decreased, both developed acidity and total solids increased in cheese with cultures, especially thermophilic culture. Also, the same parameters reached the maximum records by the end of the ripening period (90 day). The HACCP plan design shown in the results which include control measure for hazards in Tallaga soft white cheese. In concluded HACCP system is an effective way for systematic assessment of prevention and control of the probable hazards in raw milk soft white cheese in Egypt.

Key words: HACCP system, Soft white cheese, Domaiti cheese, Pathogenic bacteria, Microbiological hazards and food safety.

ACKNOWLEDGEMENT

The author wishes to express his great appreciation, sincere thanks, and deepest grateful to the supervisor **Prof. Dr. Azhar Abdel Fattah EL sayed** Emeritus Professor of Microbiology, Faculty of Agriculture, Ain Shams University for suggesting the problem, drawing the plan of the work, valuable help, advise, kind guidance and continuous encouragement during the courses and the preparation of the manuscript.

My sincere thanks and appreciation to **Dr. Enas Abdel Twab Hassan** Professor of Microbiology, Faculty of Agriculture, Ain Shams
University and **Dr. Osman Abdel allem Aita,** Assistant Professor,
Department of food science of Agriculture, Ain Shams University for
their supervision and valuable help during the courses of this work.

The author would like to express his great appreciations to all staff members of microbiology Department, Faculty of Agriculture, Ain Shams University for their encouragement and valuable help during the courses of this work.

I am particularly grateful to **my family, my husband** and **my friends** for their help and continuous encouragement during my study period.

CONTENTS

INTRODUCTION
REVIEW OF LITERATURE
1. Hazard Analysis and Critical Control Points (HACCP)
1.1. HACCP Definition
1.2. Concept origins.
1.3. HACCP System advantages
1.4. The Principles of HACCP
1.5. HACCP Methodology
1.5.1. Scope definition
1.5.2. Assemble HACCP team
1.5.3. Describe product
1.5.4. Identify intended use
1.5.5. Construct flow diagram
1.5.6. On-site confirmation of flow diagram
1.5.7. List all potential hazards associated with each step
conduct a hazard analysis, and consider any measures to contro
identified hazards (Principle 1)
1.5.8. Determine Critical Control Points (Principle 2)
1.5.9. Establish critical limits for each CCP (Principle 3)
1.5.10. Establish a monitoring system for each CCP (Principle 4).
1.5.11. Establish corrective actions (Principle 5)
1.5.12. Establish verification procedures (Principle 6)
1.5.13. Establish Documentation and Record Keeping (Principle
7)
1.5.14. HACCP plan review
1.6. Prerequisites programs
1.6.1. HACCP System Review
1.6.2. Product description
1.6.3. Operational phases and flow diagram: Steps of production
line for raw milk soft white cheese Fig. (1)

1.7. Hazard analysis and preventive measures
1.7.1. Chemical Hazards
1.7.2. Physical Hazards
1.7.3. Biological and Microbiological Hazards
2. Microbiological hazards in raw milk
3. Raw milk soft white cheese in Egypt (Domaiti cheese)
3.1. Definition of raw milk cheese
3.2. Egyptian Standards for soft white cheese in Egypt
3.3. Microbiological hazards in raw milk soft white cheese
3.3.1.Pathogenes in raw milk soft white cheese
3.3.1.1. Staphylococcus aureus
3.3.1.2. E. coli O157:H7
3.3.1.3. Salmonella spp
3.3.1.4. Listeria monocytogenes
3.3.1.5. Campylobacter spp
3.3.1.6. Bacillus cereus
4. Lactic acid bacteria (LAB) as a good microorganism improve
safety and quality in raw milk soft cheese
MATERIALS AND METHODS
1. Materials
1.1. Cheese ingredients
1.1.1. Raw milk
1.1.2. Cultures
1.1.3. Rennet
1.1.4. Salt
1.2. Media used.
1.3. Media used for biochemical reaction and identification
2. Experimental procedures
2.1. Assessment of potential microbial hazards in raw soft
cheese
2. 1.1. Sampling from retails

2.1.2. Sampling from a processing plant
3. Isolation and identification of microbial hazards were
detected in soft white cheese from retails
4. Establishment of HACCP plan for raw soft cheese
5. Application of HACCP plan in raw soft cheese
5.1. Preparation of standard pathogen inoculation
5.2. Cheese production.
6. Methods of analysis
6.1. Physiochemical analysis.
7. Microbiological analysis
8. Identification teast of pathogenic bacteria isolates
9. Statistical analysis.
RESULTS AND DISCUSSION
Part 1: Applied study of microbiological hazards in raw milk and
pasteriuzed soft white cheese in Egypt
1. Assessment of soft white cheese processed by traditional dairy
plants in retails markets
1.1.Physio-chemical composition in Domaiti soft white cheese
collected from retails markets
1.2. Microbial counts in Domaiti raw milk soft white cheeses
1.3. Pathogenic bacteria in Domaiti raw milk soft white cheese
collected from retails markets from traditional dairy plant
in Egypt on specific media
2. Isolation of some microbial pathogens from raw mill
(traditional) soft white cheese
3. Assessment of pasteurized soft white cheese processed by
modern dairy plants in Egypt
3.1. Physio-chemical composition in pasteurized soft white
cheese
3.2. Microbial counts in pasteurized soft white cheese
produced from modern dairy plants in Egypt

3.3.	Pathogenic bacteria in pasteurized milk soft white cheeses
4.	Detection of preservatives agents in pasteurized soft white
	cheese
4.1.	Identification of the inhibitor effect of pasteurized cheese
	filtrate
Part	2: Assessment of soft white cheese produced by traditional
	dairy plant and Establish HACCP Plan
1.	Microbiological and physio-chemical quality and safety of
	Egyptian soft white cheese made in dairy plant at Damietta
	Governorate
1.1.	Physio-chemical composition of raw milk soft white cheese
	produced by a traditional dairy plant in Damietta
	Governorate
1.2.	Microbiological assesment of raw milk soft white cheese
	produced by a traditional dairy plant in Damietta
	Governorate
1.3.	Microbial load in air of the cheese processing areas in a
	traditional dairy plant in Damietta Governorate
1.4.	Microbiological count of cheese processing surfaces in a
	traditional dairy plant in Damietta Governorate
2.	Summery of microbiological hazards in raw materials (raw
	milk and rennet), in process product (salted heated milk &
	curd milk), fresh cheese and ripened cheese during chain
	production line in dairy plant at Damietta governorate
Part	3: Validation of HACCP plan for production of Tallaga raw
	milk soft white cheese in model experiment
1.	Microbiological counts in cow raw milk used for Tallaga
	soft white cheese production
2.	Effect of deferent salt levels and repining periods at $5C^{\circ}$ on
	growth useful and harmful microoganisms in raw milk
	cheese

		Page
2.1.	Lactic acid bacteria (LAB) as a preservative microorganisms	
	in Tallaga raw milk soft white cheese	113
2.2.	Survival of Staphylococcus sp. isolate in Tallaga raw milk	
	soft white cheese	116
2.3.	Survival of Listeria sp. isolate in Tallaga cheese	119
2.4.	Survival of Salmonella sp. isolate in Tallaga soft white	
	cheese	122
2.5.	Survival of Coliform bactria in Tallaga cheese	124
2.6.	Survival of yeast and molds in Tallaga cheese	127
3. Pl	hysio-chemical composition of Tallaga raw milk soft white	
	cheese	130
SUN	MMARY AND CONCLUSIONS	133
REC	COMMENDATION	142
REF	FERENCES	174
APP	PENDICES	171
ARA	ABIC SUMMARY	

LIST OF TABLES

Table No.		Page
	Physio-chemical composition in raw milk soft white	
1	cheeses, from traditional dairy Plants in Egypt	59
2	Microbial count (cfu/g) in raw milk soft white cheeses	62
	from traditional dairy Plants in Egypt	
3	Detection of pathogenic bacteria in raw milk soft white	
	cheeses from traditional dairy Plants in Egypt	67
4	Biochemical confirmation tests for identification of	
	some pathogenic bacteria isolated from raw milk soft	
	white cheese	68
=	Physio-chemical composition in soft white cheese	
5	produced from modern dairy plants in Egypt	72
6	Microbial counts (cfu/g) in pasteurized soft white	
6	cheeses from modern plants in Egypt	75
	Detection of preservatives agents in pasteurized soft	
7	white cheese produced by modern dairy plants in Egypt	
	against pathogenic bacteria	77
	Identification of added preservative agents in	
8	pasteurized soft white cheese produced by modern	
	dairy plant in Egypt	78
	Physio-chemical composition of raw milk soft white	
9	cheese produced by a traditional dairy plant in	
	Damietta governorate	83
	Microbiological count of raw milk soft white cheese	
10	Microbial count (x10 ² cfu/g or ml) of raw milk soft	
10	white cheese processed in a traditional dairy plant in	
	Damietta Governorate	85
	Enumeration of <i>Staphylococcus</i> spp (x 10 ² cfu/g or ml)	
11	in raw milk soft white cheese processed by a traditional	
11	dairy plant in Damietta Governorate	88

Γable No.		Page
	Detection of Pathogenic bacteria in raw milk soft white	
12	cheese processed by a traditional cheese plant in	
	Damietta Governorate	90
13	Microbial load (cfu/30 min) in air of the cheese	
13	processing areas in dairy plant in Damietta governorate	93
	Microbiological counts (cfu/15cm) of cheese	
14	processing surface's swabs in dairy plant in Damietta	
	Governorate	94
15	Hazard analysis and identification of critical control	
	points for chain production line (Establishment of	
	HACCP)	102
16	Identified Operational Prerequisite Programs "O PRP"	
10	for processing of raw milk soft white cheese	107
17	HACCP plan summary for raw milk soft white cheese	108
	Physio-chemical composition for Tallaga cheese	
18	manufactured with different salt levels (6%, 8%, 10%),	
10	lactic acid bacteria cultures, inoculated with pathogen	
	isolates and ripened for 1, 30, 60 and 90 day at 5° C	131
19	Product description	132
A	Identification of Staphylococcus spp isolate by	
	BioMérieux	179
В	Identification of Salmonella spp isolate by BioMérieux	180

VIII

LIST OF FIGURES

Fig. No.		Page
1	Operational phases and flow diagram: Steps	
	production line for raw milk soft white cheese	12
2	Flow chart of Tallaga soft white cheese production	
	using different cultures and salt combinations	42
3	Microbial counts in raw milk soft white cheese	
	produced by traditional dairy plants in Egypt	62
4	Enumeration of Staphylococcus spp (log cfu/g) in	
	raw milk soft white cheese from traditional dairy	
	plants in Egypt	65
5	Microbial counts (cfu/g) in pasteurized soft white	
	cheeses produced from modern dairy plants	75
6	Enumeration of Staphylococcus spp (cfu/g) in	
	pasteurized soft white cheeses from modern dairy	
	Plants in Egypt	76
7	Inhibition zone diameter (cm) of Salmonella spp	
	(A), Inhibition zone diameter (cm) of Salmonella	
	spp (A), Listeria spp (B) and Staphylococcus spp	
	(C) using cheese filtrate as inhibitor agent	78
8	Heat stability of preservative agent (nisin) added	
	collected from pasteurized soft white cheese	
	produced by modern dairy plants in Egypt	80
9	Microbial load in raw milk used for cheese	
	production in dairy plant in Damietta governorate	97
10	Microbial load in rennet used for cheese production	
	in dairy plant in Damietta Governorate	97
11	Microbial load in heated and vated step in dairy	
	plant in Damietta Governorate	98
12	Microbial load in curd milk step in dairy plant in	
	Damietta Governorate	99