Ain Shams University
Faculty of Science
Geophysics Department

4D SEISMIC FEASIBILITY STUDY, IN SIENNA, WEST DELTA DEEP MARINE, OIL FILED

A thesis submitted for partial fulfillment for the requirements of Master degree of Science in Applied Geophysics

By

Ahmed Ezzat Mohamed

B.Sc. in Geophysics
Faculty of Science – Ain Shams University, 2010

To

Geophysics Department Faculty of Science Ain Shams University

Supervised by

Prof. Dr. Abd Elnaser Mohamed Helal

Professor of Geophysics

Geophysics department – Faculty of Science – Ain Shams University

Dr. Samir Elnaggar

Assistant Chairman for Exploration
And Board Member of El Mansoura
Petroleum Company

Dr. Ayman Shebl

Lecturer of Geophysics
Geophysics department – Faculty
of Science – Ain Shams University

Cairo - 2015

Note

The present thesis is submitted to faculty of Science, Ain Shams University in partial fulfillment for the requirements of the Master degree of Science in Geophysics.

Beside the research work materialized in this thesis, the candidate has attended ten post-graduate courses for one year in the following topics:

- 1. Geophysical field measurements
- 2. Numerical analysis and computer programming
- 3. Elastic wave theory
- 4. Seismic data acquisition
- 5. Seismic data processing
- 6. Seismic data interpretation
- 7. Seismology
- 8. Engineering seismology
- 9. Deep seismic sounding
- 10. Structure of the earth

He successfully passed the final examinations in these course.

In fulfillment of the language requirement of the degree, he also passed the final examination of a course in the English language.

Prof. Dr. Said Abdel-Maaboud Aly

Head of Geophysics Department

ACKNOWLEDGMENTS

First and foremost, praises and thanks to Allah (God), the Almighty, for His showers of blessings throughout my research work to complete the research successfully.

I would like to express my deep thanks and sincere gratitude to Prof. Dr. Abd ElNaser Mohmed Helal, and to Dr. Samer El naggar, and Dr. Ayman Shebl for supervision, scientific advice, critical reading and reviewing the thesis.

Thanks are also indebted to Dr. Ashraf El Amer, General of Exploration Department in Rashpetco company for suggesting the points of research.

I would like to thank Dr. Mohamed Fathy, DPO Senior Petrophysicist, for his support, scientific advice, continuous help and encouragement.

Also, I would like to thank Eslam Yehia, Hesham Mohamed, Rashed geophysists and all the staff members of Geophysics Department, Rashpetco company, for their generous help and support during this thesis. Also thanks to Ahmed Ali, IPR Petrophysicist, for his effort during the different steps of the preparation of the thesis.

Thanks are also due to EGPC information and publication committee and for Rashpetco Company for providing the data needed for this thesis.

Last but not least, grateful and true appreciation are expressed to my father(rest in peace), mother, brother, sister for their true helpful patience and encouragment.

Abstract

4D (time-lapse) seismic has become a powerful technology for oil companies to manage their reservoirs. The use of 4D technology is obviously a major investment for oil companies. time-lapse seismic has been proven to be very effective for monitoring not only gas production but also injection process. The process of gas production causes variations in reservoir parameters such as fluid types, fluid saturation and pressure and reservoir thickness and thus changes seismic properties of saturated reservoir rock. Therefore, it is crucial to the success of 4D seismic projects to make a feasibility study determining how we can properly plan 4D seismic surveys for a reservoir under consideration.

Determining the petrophysical parameters (porosity, effective porosity, hydrocarbon and water saturation, shale content) for sienna reservoirs rocks using conventional logging tools (Gamma ray, Density, Neutron, Resistivity) in two wells and study of the lithology and clay mineralogy of sienna reservoir through Thorium ,photo electric effect, potassium, neutron-density and photo electric effect-density crossplots was done.

AVO simultaneous inversion inverts pre-stack seismic into P-wave velocity (Vp), S-wave velocity (Vs) and density (ρ). The products of AVO simultaneous inversion can be modeled in the static 2D models.

The rock physics model can explain variations in reservoir parameters using the changes in seismic properties several theories link seismic properties of reservoir rock to pore spaces, pore fluids, effective pressure and other reservoir parameters. It is primarily based on core measurements and well logs (1D point model) and AVO inversion product (2D model). The fluid substitution model used to detect the change of the water saturation in the seismic parameters using Gassmann's equation and the friable sand model used to detect the change of the pore pressure in the seismic parameters using the Hertz-Mindlin and lower Hashin-Shtrikamn equation.

Contents

Contents

Ackno	wled	gementsI	
Abstra	ct	II	
Conter	nts	III	
List of	Figui	resVI	
List of	Table	esXII	
List of	Abbı	reviationsXIII	
1 In	trod	uction	2
1.1	Int	roduction	2
1.2	loc	cation of study area	3
1.3	Av	aliable data	4
1.4	Ex	ploration history	4
1.5	Air	m and Workflow	6
2 GI	OLO	GICAL SETTING	9
2.1	Int	roduction	g
2.2	Ва	thymetry of the Area	10
2.3	G	eneral Stratigraphy:	11
2.:	3.1	Paleozoic	13
2	3.2	Mesozoic	13
2.:	3.3	Cenozoic	13
2.4	Ge	neral Structural Setting	29
2.	4.1	Rosetta Fault	30
2.:	3.2	East-West Faults	31
2.:	3.3	Temsah Fault	31
2.5	Te	ctonic Evolution	32
2.6	Ge	ology of the study area	34
3 W	ell L	ogging Analysis and Interpretation	37
3.1	Int	roduction	37
3.2	De	termination of Formation Temperature (FT)	37
3.3	Co	rrection of the Mud Resistivities(Rm,Rmc and Rmf)	38

Contents

	3.4 Formation Water Resistivity (Rw)		38	
3.5 Det		Dete	ermination of Shale Content (Vsh):	38
	3.5.	1	Determination of Shale Content (VSHGR)	39
	2.5.	2	Determination of Shale Content (VSHDN)	39
3.6 I		Dete	ermination of Formation Porosity (φ)	40
	3.6.	1	Total Porosity(φDt)	40
	3.6.	2	Effective porosity(φDe)	40
	3.7	Wat	er Saturations Determination (Sw and Sox)	41
	3.8	Hyd	rocarbon Saturations Determination	42
	3.9		off and Pay flags	
	3.10	Lith	ologic Identification	44
	3.10	0.1	RHOB-NPHI Crossplot Identification	
	3.10	0.2	PEF-RHOB Crossplot Identification	51
	3.11	-	Minerals Identification using Natural Gamma Ray Spectrometry Tool S)	58
	3.13	1.1	Clay Minerals Identification Crossplots of sienna Wells	60
	3.12	Litho	o-Saturation Crossplots of sienna wells	66
	3.12	2.1	Litho-Saturation Crossplots of sienna-1	66
	3.12	2.2	Litho-Saturation Crossplots of sienna -2	71
4	AVO) Inv	ersion	75
	4.1	Back	ground Theory	75
	4.1.	1	Elastic Properties	75
	4.1.	2	Seismic Properties	76
	4.1.	3	AVO Concept	77
	4.1.	4	Aki-Richards Equation	79
	4.1.	.5	Shuey's Equation	80
	4.1.	6	Fatti etal's Formulation of Aki-Richards Equation	80
	4.1.	7	AVO Cross Plotting	81
	4.2	Data	a Required	84
	13	Inve	rsion	86

Contents

R	efernc	PS	.155
6	Sun	nmary	151
	5.3	2D modeling	142
	5.3.	1 Model calculation and results	126
	5.2	1D point modeling	125
	5.1.	3 Compaction model	124
	5.1.	3 The friable sand model	122
	5.1.	2 Gassmann fluid substitution	119
	5.1.	1 Critical porosity	118
	5.1	Background Theory	118
5	Roc	k physics modeling	118
	4.9	Inversion Results	113
	4.8	Inversion analysis	108
	4.7	Initial Model Construction	106
	4.6	Deterministic Wavelet Extraction	104
	4.5	Statistical Wavelet Extraction	102
	4.4.	2 Seismic Data Quality Control	93
	4.4.	1 Well Log Quality Control and Editing	87
	4.4	Data Conditioning and Quality Control	87

List of Figures

Figure 1.1: Sienna location map
Figure 1.2: Study workflow
Figure 2.1: Bathymetric map of WDDM Concession. (After Raslan 2002)11
Figure 2.2: General Nile Delta stratigraphic column and hydrocarbon system.
(After Raslan 2002)12
Figure 2.3: Sidi Salim Structural Map. (After Raslan 2002)
Figure 2.4: Qawasim Structural Map. (After Raslan 2002)
Figure 2.5: Abu Madi Structural Map. (After Raslan 2002)21
Figure 2.6: Kafr El Sheikh Structural Map. (After Raslan 2002)
Figure 2.7: El Wastani Structural Map. (After Raslan 2002)
Figure 2.8: Main fault trends of the Nile Delta. Modified from (Abd El Aal et
al., 2001)
Figure 2.9: The faults, anticlines, and convergence arcs .(After Abd-Allah
2008)
Figure 2.10: 3D schematic diagram showing the depositional model of
turbidite slope channels (After Reading and Richards 1994) 35
Figure 3.1: Hydrocarbon pore volume sensitivity plots for water saturation
(top) and effective porosity (bottom) cut off validation
Figure 3.2: RHOB-NPHI Cross Plot for below sand zone in Sienna-1 Well.
Figure 3.3: RHOB-NPHI Cross Plot for shaly sand-1 zone in Sienna-1 Well.
Figure 3.4: RHOB-NPHI Cross Plot for shaly sand-2 zone in Sienna-1 Well
Figure 3.5: RHOB-NPHI Cross Plot for water sand zone in Sienna-1 Well.47
Figure 3.6: RHOB-NPHI Cross Plot for sand-1 zone in Sienna-1 Well 47
Figure 3.7: RHOB-NPHI Cross Plot for sand-2 zone in Sienna-1 Well 48
Figure 3.8: RHOB-NPHI Cross Plot for thinbed zone in Sienna-1 Well 48
Figure 3.9: RHOB-NPHI Cross Plot for shalysand-1 zone in Sienna-2 Well.
Figure 3.10: RHOB-NPHI Cross Plot for sand zone in Sienna-2 Well 49
Figure 3.11: RHOB-NPHI Cross Plot for shale zone in Sienna-2 Well 50
Figure 3.12: RHOB-NPHI Cross Plot for shaly sand-2 zone in Sienna-2
Woll 50

Figure 3.13: RHOB-NPHI Cross Plot for thinbed zone in Sienna-2 Well 51
Figure 3.14: PEF-RHOB Cross Plot for below sand zone in Sienna-1 well. 52
Figure 3.15: PEF-RHOB Cross Plot for shaly sand-2 zone in Sienna-1 well.
Figure 3.16: PEF-RHOB Cross Plot for sand-1 zone in Sienna-1 well 53
Figure 3.17: PEF-RHOB Cross Plot for sand-2 zone in Sienna-1 well 54
Figure 3.18: PEF-RHOB Cross Plot for shaly sand-1 zone in Sienna-1 well.
Figure 3.19: PEF-RHOB Cross Plot for thinbed zone in Sienna-1 well 55
Figure 3.20: PEF-RHOB Cross Plot for water sand zone in Sienna-1 well. 55
Figure 3.21: PEF-RHOB Cross Plot for shaly sand-2 in Sienna-2 well 56
Figure 3.22: PEF-RHOB Cross Plot for sand zone in Sienna-2 well 56
Figure 3.23: PEF-RHOB Cross Plot for shale zone in Sienna-2 well 57
Figure 3.24: PEF-RHOB Cross Plot for shaly sand-1 zone in Sienna-2 well.
Figure 3.25: PEF-RHOB Cross Plot for thin bed zone in Sienna-2 well 58
Figure 3.26: TH-K Cross Plot for Sienna-1 Well
Figure 3.27: TH- K Cross Plot for Sienna-2 Well. 61
Figure 3.28: PEF-K Cross Plot for Sienna-1 Well
Figure 3.29: PEF- K Cross Plot for Sienna-2 Well
Figure 3.30: PEF-TH/K Cross Plot for Sienna-1 Well
Figure 3.31: PEF-TH/K Cross Plot for Sienna-2 Well
Figure 3.32:Litho Saturation Cross Plot for Sienna-1Well
Figure 3.32:Litho Saturation Cross Plot for Sienna-1Well (Continued) 70
Figure 3.33: Litho Saturation Cross Plot for Sienna-2 Well
Figure 3.33: Litho Saturation Cross Plot for Sienna-2 Well (Continued) 73
Figure 4.1: Bulk Modulus of a rock. Modified from ESA
Figure 4.2: Shear Modulus of a rock. Modified from ESA
Figure 4.3: : Wave Reflection and Transmition of waves. Modified from
Hampson & Russell et al. 201078
Figure 4.4: AVO classes related to clastics geologic setting. Modified from
Hampson& Russell et al. 2010
Figure 4.5: Intercept versus gradient crossplot displaying location of AVO
classes . Modified from Hampson& Russell et al. 2010
Figure 4.6: Flow chart outlining the steps of the pre-stack inversion
workflow

Figure 4.7: Well logs from sienna-1 well showing the editing needed, the
original density log (red curve) that had been replaced using the
Gardner's equation (blue curve)
Figure 4.8: Well logs from sienna-2 well showing the editing needed, the
original density and s-wave log (red curve) that had been replaced
using the Gardner's equation and Castagna's equation (blue
curve) 90
Figure 4.9: An example of the check-shot correction at sienna-1 well. A
drift-curve (in blue) is defined as a measure of the difference
between the two time-depth relationships, shown on the left hand
side. The black track is the original Vp log and the red track is the
theoretically corrected Vp log
Figure 4.10:An example of the check-shot correction at sienna-1 well. A
drift-curve (in blue) is defined as a measure of the difference
between the two time-depth relationships, shown on the left hand
side. The black track is the original Vp log and the red track is
the theoretically corrected Vp log
Figure 4.11: Processing summary from the final processing report 94
Figure 4.12: Seismic pre-stack data conditioning workflow, the wiggle
shapes represent the seismic traces. (After Islam Yehia 2014). 95
Figure 4.13: Amplitude spectra of seismic gather volume before (top) and
after (bottom) applying the filter
Figure 4.14: Random cross-line shows an example of the application of the
time misalignment correction. top Before applying the trim
static and bottom After applying the trim static
Figure 4.15: The theoretical AVO model on seismic traces at sienna-1 well
location
Figure 4.16: The AVO response at sienna-1 well location. (top) Before the
amplitude balancing and (bottom) After the amplitude balancing.
Figure 4.17: Statistical wavelets for the near (yellow), the mid (red) and the
far (blue) angle stacks, with time response on top and respective
amplitude spectrum on the bottom. The phase is constant 180
degrees for the three angle stacks
Figure 4.18: Deterministic wavelets for the near (yellow), the mid (red) and
the far (blue) angle stacks, with time response on top and

respective amplitude spectrum on the bottom, the optimum		
phase is highlighted with the same colors		
Figure 4.19:The initial low-frequency model, (top) P-impedance, (middle) S-		
impedance and (bottom) Density		
Figure 4.20: AVO simultaneous inversion workflow		
Figure 4.21: LnZs vs. LnZp plot on the left and LnDn vs. LnZp on the right.		
Figure 4.22:Pre-stack inversion analysis for well sienna-1 using (top)		
statistical wavelet set and (bottom) deterministic wavelet set.		
From Left to Right the columns represent the inverted Zp, Zs,		
density and Vp/Vs (red) compared with original logs (blue). The		
Synthetic trace created by the inversion is shown in red for each		
angle gather and the original seismic trace is shown in black.		
The difference between the two is shown by the log on the far		
right		
Figure 4.23: Pre-stack inversion analysis for well sienna-2 using (top)		
statistical wavelet set and (bottom) deterministic wavelet set.		
From Left to Right the columns represent the inverted Zp, Zs,		
density and Vp/Vs (red) compared with original logs (blue). The		
Synthetic trace created by the inversion is shown in red for each		
angle gather and the original seismic trace is shown in black.		
The difference between the two is shown by the log on the far		
right		
Figure 4.24: Inverted P-impedance section at sienna-1 location		
Figure 4.24: Inverted P-impedance section at stenna-1 location		
Figure 4.25: Inverted F-wave section at sienna-1 location		
Figure 4. 27: Inverted s-wave section at sienna-1 location		
Figure 4.28: Inverted density section at sienna-1 location		
Figure 4.28: Inverted density section at sienna-1 location		
Figure 5.2: Rock physics workflow		
Figure 5.2: Rock physics workhow		
water saturation in sienna- 1		
Figure 5.4: The change in the elastic and seismic properties with different		
water saturation in sienna-2		

Figure 5.5: Intercept versus gradient crossplot displaying the water saturating
effect at sienna-1
Figure 5.6: Intercept versus gradient crossplot displaying the water saturating
effect at sienna-2
Figure 5.7: Measured depth vs. overburden pressure in sienna-1
Figure 5.8:Measured depth vs. overburden pressure in sienna-2
Figure 5.9:Porosity vs. effective pressure from SCAL data for different core
samples in sienna-1
Figure 5.10: Porosity vs. effective pressure from SCAL data for different
core samples in sienna-2
Figure 5. 11: Porosity vs. effective pressure from SCAL data for one core
sample in sienna-1
Figure 5.12: Porosity vs. effective pressure from SCAL data for one core
sample in sienna-2
Figure 5.13: The change in the elastic and seismic properties with different
pore pressure in sienna-1
Figure 5.14: The change in the elastic and seismic properties with different
pore pressure in sienna-2
Figure 5.15: Intercept versus gradient crossplot displaying the pore pressure
effect at sienna-1
Figure 5.16:Intercept versus gradient crossplot displaying the pore pressure
effect at sienna-2
Figure 5.17: The change in the elastic and seismic properties with different
pore pressure and water saturation in sienna-1
Figure 5.18: The change in the elastic and seismic properties with different
pore pressure and water saturation in sienna-2
Figure 5.19: The drop in reflectivity with different pore pressure and water
saturation in sienna-1
Figure 5.20: The drop in reflectivity with different pore pressure and water
saturation in sienna-2
Figure 5.21: The drop in seismic amplitude with different pore pressure and
water saturation in sienna-1
Figure 5.22: The drop in seismic amplitude with different pore pressure and
water saturation in sienna-2
Figure 5.23: The change in the reservoir thickness with different pore
pressure in sienna-1

List of Figures

Figure 5.24: The change in the reservoir thickness with different pore
pressure in sienna-2
Figure 5.25: The sand flag at sienna-1, gas sand in blue colour 14
Figure 5.26: Pore pressure v. True Vertical Depth, sienna-1(blue), sienna-
2(red)14
Figure 5.27: Depth BML vs. TWT time from sienna-1 check-shots 14
Figure 5.28: Depth BML vs. overburden pressure (rock only)
Figure 5.29: Effective pressure distribution in the model at sienna-1 14.
Figure 5.30: Porosity distribution in the model at sienna-1
Figure 5.31: Water saturation vs. porosity in gas sand interval in sienna-1
well
Figure 5.32: Water saturation distribution in the model at sienna-1 14
Figure 5.33: The effect of increasing water saturation in p- impedance at
sienna-1 and sienna-2
Figure 5.34: The effect of decreasing pore pressure in p- impedance at
sienna-1 and sienna-2
Figure 5.35: The effect of increasing water saturation in seismic amplitude
at sienna-1
Figure 5.36: The effect of decreasing pore pressure in seismic amplitude at
sienna114

List of Tables

Table 3-1: Petrophysical parameters for pay zone in sienna-1 well 67
Table 3-2: Petrophysical parameters for reservoir zone in sienna-1 well 68
Table 3-3: Petrophysical parameters for pay zone in sienna-2 well
Table 3-4: Petrophysical parameters for reservoir zone in sienna-2 well 71
Table 4-1: AVO Classification by Rutherford - Williams, and Castagna,
1997. Taken and modified of Hampson & Russell course et al.
2010 82
Table 4-2: The data required for each part of the workflow and where in
that process the data is applied
Table 4-3: Near, Mid and Far RMS values for the model and the actual
seismic along with the scalars on the far right 100
Table 4-4: The correlation coefficients of the two wells using both statistical
wavelets and deterministic wavelets defined for different angle
stacks and the window over which each correlation is made 106
Table 4-5: Error values between the inverted and the original well logs and
the correlation coefficients between the original and synthetic
seismic data112
Table 5-1: The effect of production in elastic Properties
Table 5-2: The effect of production in seismic amplitude
Table 5-3: Insitu parameter for rock physics model

List of Abbreviations

Abbreviation	Name
TCF	Trillion cubic feet
WDDM	WEST Delta Deep Marine
NDOA	Nile Delta offshore anticline
3D	Three Dimensional
2D	Two Dimensional
AVO	Amplitude Versus Offset
MD	Measured depth
TVD	True vertical depth
TVDss	True vertical depth sub sea
TWT	Two Way Time
Vp	P-wave velocity
Vs	S-wave velocity
Vp/Vs	Ratio of P-wave velocity to S-wave velocity
Vsh	Shale Volume
Rp	P-wave Reflectivity
Rs	S-wave Reflectivity
Zp	P-wave impedance
Zs	S-wave impedance
Φ	Porosity
FT	Formation Temperature
GR	Gamma Ray
GDT	Gas Down To
GWC	Gas Water Contact
HPVH	Hydrocarbon Pore Volume Thickness
RM	Resistivity of mud
RMC	Resistivity of mud cake
RMF	Resistivity of mud filtrate
Rw	Water Resistivity
φ	Porosity
Sw	Water saturation
SCAL	Special core analysis
K	Bulk modulus
μ	Shear modulus
Тр	Transmitted P-wave
Ts	Transmitted s-wave
θ	Angle of incidence