Abstract

Background: Hemodialysis represents the main mode for treatment of chronic kidney disease stage 5 (CKD5). Anemia is one of disorders may develop as a consequence of the loss of renal function.

Aim of the Work: To Study the relationship between fibroblast growth factor-23 and Anemia in diabetic patients on regular hemodialysis.

Methodology: This was an analytical case control study on 90 patients who have end stage kidney disease on regular hemodialysis during 2015, In Al-Agouza Hospital; Patients were divided into 2 groups: Group 1: 45 patient diabetic, ESKD on regular hemodialysis, and level of hemoglobin less than 11 gm\dl. Group 2: 45 patient not diabetic, ESKD on regular hemodialysis, and level of hemoglobin less than 11gm\dl.

Results: This is an analytical case control study on 90 patients which have end stage kidney disease on regular hemodialysis, during 2015&2016, Al-Agouza Hospital.

Conclusion: our findings suggest that serum FGF-23 level in hemodialysis patients is significantly correlated with serum hemoglobin level. Serum FGF-23 is significantly higher in diabetic patients than non-diabetics. PTH levels is significantly higher in the hemodialysis patients especially non diabetics.

Recommendations: Fibroblast Growth factor-23 is related to anemia in hemodialysis patients, so more studies or studies conducted on large number of patients may help to find recent modalities to decrease FGF-23 thus help improving anemia in hemodialysis patients. Correction of serum FGF-23 level may help in correction of serum calcium and PTH. FGF-23 may be used in the follow up of diabetic nephropathy.

Keywords: Relationship between Anemia, Fibroblast Growth Factor 23, Diabetic patients, Regular Hemodialysis

Contents

Subjects	Paģe
List of abbreviations	II
List of figures	IV
List of tables	VI
• Introduction	1
Aim of the Work	3
• Review of Literature	
◆ Chapter (1): Anemia of Chronic Kidney	
Disease	4
◆ Chapter (2): Fibroblast Growth Factor-23.	30
Patients and Methods	50
• Results	57
• Discussion	70
• Conclusion	77
• Recommendations	78
• Summary	79
• References	82
Arabic Summary	

List of Abbreviations

Meaning Abbrev. : Bone mineral density **BMD** : Erythropoietin receptor activator CERA : Chronic kidney disease **CKD** : Chronic kidney disease stage 5 CKD5 : Enzyme linked immunosorbent assay **ELISA ESAs** : Erythropoiesis-stimulating agents **ESKD** : End-stage kidney disease : End-stage kidney disease **ESRD** FGF23 : Fibroblast growth factor 23 : Fibroblast growth factor receptors **FGFRs** : Glomerular filtration rate **GFR**

IL-1 : Interleukins -1

HIF

HRP

KDOQI : Kidney Diseae Outcomes Quality Initiative

: Hypoxia inducible factor

: Horseradish Peroxidase

🕏 List of Abbreviations

PEG-EPO: Pegylated epoetin

PRCA : Pure red cell aplasia

PTH : Parathyroid hormone

RBC : Red blood cell

TIBC : Total iron-binding capacity

TNF : Tumor necrosis factor

List of Figures

No.	<u>Figure</u>	<u>Page</u>
1	Comparison between the studied groups as regard serum FGF-23.	61
<u>2</u>	The inverse correlation between hemoglobin and FGF-23 in the all studied groups.	63
<u>3</u>	The inverse correlation between hemoglobin and FGF-23 in the studied group 1 (the diabetic group).	64
<u>4</u>	The inverse correlation between hemoglobin and FGF-23 in the studied group 2 (non- diabetic group).	65
<u>5</u>	The inverse correlation between serum albumin and FGF-23 in the all studied groups.	66
<u>6</u>	The inverse correlation between serum calcium and FGF-23 in the studied group 1(the diabetic group).	67
7	The positive correlation between PTH and FGF-23 in the all studied groups.	68
<u>8</u>	The positive correlation between PTH and FGF-23 in the studied group 2 (the non-diabetic group).	24

List of Tables

<u>No.</u>	<u>Table</u>	<u>Page</u>
1	GFR Categories in CKD.	4
<u>2</u>	Albuminuria Categories in CKD.	5
<u>3</u>	Comparison between studied groups regarding age & duration of dialysis.	58
<u>4</u>	Comparison between the studied groups as regard anaemic parameters.	59
<u>5</u>	Comparison between the studied groups as regard MBD parameters.	60
<u>6</u>	Comparison between the studied groups as regard Albumin level & fasting blood sugar.	60
<u>7</u>	Comparison between the studied groups as regard FGF-23 level.	61
<u>8</u>	Correlation between FGF-23 and other study parameters, in all patients, and in subgroups.	62

Introduction

Aim of the Work

Review of Literature

CHAPTER (1)

Anemia of Chronic Kidney Disease

CHAPTER (2)

Fibroblast Growth Factor-23

Patients and Methods

Results

Discussion

Conclusion

