

PHYSIOLOGICAL AND BIOCHEMICAL STUDIES ON AVICENNIA MARINA (FORSK.) VIERH GROWN IN EGYPT

Thesis
Submitted for the Partial Fulfillment of the Degree of
Master of Science in Botany

By

Nabeha Samir Ibraheem Mohamad B.Sc. in Science (Botany-Chemistry)

Ain Shams University
Faculty of Science
Botany Department

Ain Shams University Faculty of Sciece Botany Department

PHYSIOLOGICAL AND BIOCHEMICAL STUDIES ON AVICENNIA MARINA (FORSK.) VIERH GROWN IN EGYPT

Thesis

Submitted for the Partial Fulfillment of the Degree of Master of Science in Botany

By

Nabeha Samir Ibraheem Mohamad

B.Sc. in Science (Botany-Chemistry)

("

Supervised By

Prof. Dr. Seham M. Ali Moustafa

Professor of Plant Physiology, Botany Department, Faculty of Science, Ain Shams University

Prof. Dr. M. Magdel-Din Hussein

Professor of Chemistry of Microbial and Natural Products National Research Centre

Prof. Dr. Abla Hassan Nassar

Professor of Plant Physiology (Plant Tissue Culture and Biotechnology),

Botany Department, Faculty of Science, Ain Shams University

Ain Shams University
Faculty of Science
Botany Department

Approval Sheet

Title of the Thesis: Physiological and Biochemical Studies on

Avicennia marina (Forsk.) Vierh Grown in Egypt

Degree: Master of science in Botany

Name: Nabeha Samir Ibraheem Mohamad

This Thesis for Master of Science Degree has been approved by:

- Prof. Dr. Mohamed Abdo K. Shaddad

Professor of Plant Physiology, Botany Department, Faculty of Science, Assuit University

- Prof. Dr. Hamdia Mahmoud Abd El- Samad

Professor of Plant Physiology, Botany Department, Faculty of Science, El- Minia University

- Prof. Dr. Seham M. Ali Moustafa

Professor of Plant Physiology, Botany Department, Faculty of Science, Ain Shams University

- Prof. Dr. M. Magdel-Din Hussein

Professor of Chemistry of Microbial and Natural Products, National Research Centre

Date of examination: / /Y··V

This thesis has not been previously submitted for any degree at
this or at any other university.
Signed
Nabeha Samir Ibraheem

AKNOWLEDGEMENT

Firstly and Finally Thanks for Allah

Sincerely, I express my deepest thanks, grateful appreciation, and certainly a conventional word of acknowledgement cannot pay for the valuable guidance I have received from Prof. Dr. Mohamed Hussein Darwesh Professor Magdel-Din Chemistry of Natural and Microbial Products, National Research Centre, Prof. Dr. Seham M. Ali Moustafa, Professor of Plant Physiology, Department of Botany, Faculty of Science, Ain Shams University, and Prof. Dr. Abla Hassan Nassar. Professor of Physiology (Plant Tissue Culture Plant and Biotechnology), Department of Botany, Faculty of Science, Ain Shams University, and for their support, understanding and continuous encouragement.

I also grateful for Prof. Dr. Azza M. Saber El-Shafey, Head of Botany Department, Faculty of Science, Ain Shams University.

I also offer my thanks for all my colleagues at the National Research Centre.

ABSTRACT

Samples of Avicennia marina (Forsk.) Vierh were collected from a location at Safaga Mangrove Stand, 'V' km south Safaga, Red Sea shore, Egypt at different seasons; i.e., summer, autumn, winter, and spring. Natural products were analyzed in leaves, lateral branches, bark and seeds for possible use in certain drug production. The season and the plant organ were detected, where highest amounts of respective plant constituents were attained. In this instance, polysaccharides comprised the major constituents of Avicennia marina organs and could be isolated into two fractions: PI including material of relatively high molecular weight and PII with lower molecular weight. In general, the PI yield in different plant organs at different seasons was higher than that of corresponding PII product. Mostly, the PI products were characterized by relatively higher anticoagulant fibrinolytic and activities corresponding PII products. Seven of the components in the PI fraction and three in the PII product exhibited fibrinolytic activities higher than that of the preparation. standard Hemoclar Sulfating the polysaccharide fractions of Avicennia marina was also found promising, with respect to enhancing their biological activity. Assessing possible growth regulating activities of the polysaccharide fractions of *Avicennia marina* plant organs at different seasons was carried out, using callus tissue initiated from *Helianthus annus* seedlings. The most interesting result was the rooting- inductive effect of the PI products originated from the autumn leaves and the winter bark.

Contents

Subjects	Page
Introduction	
Aim of work	
Materials and Methods	
Materials	
Mangrove plants	
Chemicals	
Methods	
Chemical analysis of the mangrove plant	
samples	
Determination of moisture content	
Determination of ash	
Determination of total lipids	
Determination of low-molecular weight	
carbohydrates	
Determination of total nitrogen and crude	
protein	
Determination of cellulose and hemicellulose	
Determination of lignin	
Determination of pectin	
Isolation of different forms of alkali-extractable	
polysaccharides from the mangrove plant	
Analysis of the alkali-extractable	
polysaccharides	
Determination of total carbohydrates	
Qualitative examination and quantitative	
determination of the sugar moieties comprising	
the isolated alkali-extractable polysaccharides	
Determination of soluble protein	
Biological activities of the isolated	
polysaccharides Anti-googylation activity	
Anti-coagulation activity	
Fibrinolytic activity	

Subjects	Page
Fractional precipitation of polysaccharides with	
ethanol	
Sulfation of the isolated polysaccharides	
Cleavage of the sulfate ester group	
Turbidimetric assay of the liberated sulfate	
Reaction with toluidine blue	
Plant tissue culture techniques	
Seed sterilization, germination and preparation	
of explants for callus induction	
Formation, preparation of culture medium and	
inoculation of explants	
Treatment of callus with polysaccharides	
Determination of mono and disaccharides in	
callus tissues	
Results	
Discussion	
English summary	
References	
الموجز باللغة العربية	I
	I

List of Tables

	List of Tables				
No.	Table	Page			
I. Meta	I. Metabolic constituents of Avicennia marina as affected by				
seasona	l variation				
	Biochemical constituents of Avicennia marina				
	leaves as influenced by seasonal variation.				
	Biochemical constituents of Avicennia marina				
	branches as influenced by seasonal variation.				
	Biochemical constituents of Avicennia marina				
	bark as influenced by seasonal variation.				
	Biochemical constituents of Avicennia marina				
	seeds as influenced by seasonal variation.				
II. Iso	lation and characterization of alkali-ex	ktractable			
polysac	charides				
	Yeild and analytical characteristics of alkali-				
	extractable polysaccharides isolated from				
	Avicennia marina leaves.				
	Yeild and analytical characteristics of alkali-				
	extractable polysaccharides isolated from				
	Avicennia marina branches.				
	Yeild and analytical characteristics of alkali-				
	extractable polysaccharides isolated from				
	Avicennia marina bark.				
	Yeild and analytical characteristics of alkali-				
	extractable polysaccharides isolated from				
	Avicennia marina seeds.				
	Monosaccharide constituents of alkali-				
	extractable polysaccharides isolated from				
	Avicennia marina leaves.				
	Monosaccharide constituents of alkali-				
	extractable polysaccharides isolated from				
	Avicennia marina branches.				
	Monosaccharide constituents of alkali-				
	extractable polysaccharides isolated from				
	Avicennia marina bark.				
	Monosaccharide constituents of alkali-				
	extractable polysaccharides isolated from				
	Avicennia marina seeds.				

No.	Table	Page			
	III. Anticoagulation and fibrinolytic activity of the isolated polysaccharides				
	Biological activities of alkali-extractable polysaccharides isolated from <i>Avicennia marina</i> leaves.				
	Biological activities of alkali-extractable polysaccharides isolated from <i>Avicennia marina</i> branches.				
	Biological activities of alkali-extractable polysaccharides isolated from <i>Avicennia marina</i> bark.				
	Biological activities of alkali-extractable polysaccharides isolated from <i>Avicennia marina</i> seeds.				
	Chemical and biological characteristics of various polysaccharides fractions isolated from autumn leaves of <i>Avicennia marina</i>				

List of Figures

List of Figures			
No.	Figure	Page	
	Biochemical constituents of <i>Avicennia marina</i> leaves as influenced by seasonal variation.		
	Biochemical constituents of <i>Avicennia marina</i> branches as influenced by seasonal variation.		
	Biochemical constituents of <i>Avicennia marina</i> bark as influenced by seasonal variation.		
	Biochemical constituents of <i>Avicennia marina</i> seeds as influenced by seasonal variation.		
	Yeild and analytical characteristics of alkali- extractable polysaccharides isolated from <i>Avicennia marina</i> leaves.		
	Yeild and analytical characteristics of alkali- extractable polysaccharides isolated from <i>Avicennia marina</i> branches.		
	Yeild and analytical characteristics of alkali- extractable polysaccharides isolated from <i>Avicennia marina</i> bark.		
	Yeild and analytical characteristics of alkali- extractable polysaccharides isolated from <i>Avicennia marina</i> seeds.		
	A chromatogram showing the monosaccharide constituents of alkali-extractable polysaccharides isolated from <i>Avicennia marina</i> leaves.		
	A chromatogram showing the monosaccharide constituents of alkali-extractable polysaccharides isolated from <i>Avicennia marina</i> branches.		
	A chromatogram showing the monosaccharide constituents of alkali-extractable polysaccharides isolated from <i>Avicennia marina</i> bark.		

No.	Figure	Page
	A chromatogram showing the monosaccharide constituents of alkali-extractable polysaccharides isolated from	
	Avicennia marina seeds.	
	Biological activities of alkali-extractable polysaccharides isolated from <i>Avicennia marina</i> leaves.	
	Biological activities of alkali-extractable polysaccharides isolated from <i>Avicennia marina</i> branches.	
	Biological activities of alkali-extractable polysaccharides isolated from <i>Avicennia marina</i> bark.	
	Biological activities of alkali-extractable polysaccharides isolated from <i>Avicennia marina</i> seeds.	
	Sunflower hypocotyls cultivated on MS medium	
	Friable callus produced from sunflower hypocotyls cultivated on MS medium supplemented with or without <i>Avicennia marina</i> polysaccharides	
	The effect of different polysaccharides extracted from <i>Avicennia marina</i> on the percentage of glucose in <i>Helianthus annus</i> L. callus tissues	
	The effect of different polysaccharides extracted from <i>Avicennia marina</i> on the percentage of sucrose in <i>Helianthus annus</i> L. callus tissues	