

Design, Synthesis and Biological Evaluation of Heterocyclic Compounds As Potential Targeted Anticancer Agents

Thesis Presented by

Sandra Nabil Mourad Milik

B.Sc. in Pharmaceutical Sciences (May 2012) Teaching Assistant, Pharmaceutical Chemistry Faculty of Pharmacy, Ain Shams University

Submitted in partial fulfillment of the Master's Degree in Pharmaceutical Sciences (Pharmaceutical Chemistry)

Under the Supervision of

Prof. Dr. Khaled A. M. Abouzid

Professor of Pharmaceutical Chemistry & Head of the Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University

Dr. Rabah A. T. Serya

Associate Professor of Pharmaceutical Chemistry, Faculty of Pharmacy, Ain Shams University

Dr. Deena S. Lasheen

Associate Professor of Pharmaceutical Chemistry, Faculty of Pharmacy, Ain Shams University

Faculty of Pharmacy

Ain Shams University

"Thanks be to God for His indescribable gift,

'For in Him we live and move and have our being',

Who is able to do immeasurably more than all we ask or
imagine, according to His power that is at work within us."

Acknowledgements

It's a pleasure to express my sincere appreciation to **Professor Dr. Khaled Abouzid,** Professor of Pharmaceutical Chemistry and head of the Pharmaceutical Chemistry department, for his scientific supervision, innovative ideas, fruitful opinion, invaluable advices and continuous encouragement. I am indebted to him for his guidance and endless support throughout the whole work and during writing this thesis, which allowed this thesis to appear in its final form.

I owe my truthful gratitude to **Dr. Rabah Taha**, Associate Professor of Pharmaceutical Chemistry, and **Dr. Deena Lasheen**, Associate Professor of Pharmaceutical Chemistry, for their continuous encouragement and tremendous support. I am heartily grateful to their indispensable opinion, real interest, trust, caring, eminent guidance and untiring help throughout the whole work.

I acknowledge with thankfulness all my colleagues in the Pharmaceutical Chemistry Department, for their friendly cooperation, support and invaluable aid.

I would like to express my appreciation to the National Cancer Institute, USA for performing the *in vitro* 60-cell lines anticancer assay.

I am truly grateful to the group of Professor Saverio Minucci at the European Institute of Oncology, Department of Experimental Oncology, Italy, especially to Dr Amal Abdel-Aziz, for performing the *in vitro* antiproliferative assays.

I would like to express my thanks to the Center for Drug Discovery Research and Development, Ain Shams University, for performing the NMR spectroscopy.

Transcript of Master's Courses

To whom it may concern

This is to certify that pharmacist /Sandra Nabil Mourad Milik is registered for the Master degree in the department of "Pharmaceutical Chemistry" and has successfully passed the Master's general & special courses in the academic year 2012/2013 with the general grade: Excellent

List of courses:

Subject	CR. HR	Grade in Semester (1)	Grade in Semester (2)
1- Instrumental Analysis	4	Very Good	_
2- Physical Chemistry	2	Excellent	· —
3- Computer Sciences	2	Excellent	_
4-Statistics	1	Excellent	-
5- Pharmaceutical Chemistry(1)	3		Excellent
6-Drug Stereochemistry	3	_	Excellent
7-Drug Spectroscopy	3	_ ,	Excellent
8- Selected Topics Pharmaceutical Chemistry	3	_	Very Good

Mr. Naser Fathy Mostafa
Graduate Student Affairs

Dr. Maha Farouk Abd El Ghany

Vice-Dean for Research
And Graduate Studies

Dean

Abdel Nasser B. Singab

Dean

Dean

Table of Contents

Ackno	wled	gements	I
Trans	cript	of Master's Courses	.III
Table	of Co	ntents	.IV
List of	Figu	res	.VI
List of	Tabl	les	X
List of	Abbi	reviations	XII
Abstro	act		XV
1. Inti	rodu	ction	1
1.1.	Get	to know your enemy: What is Cancer?	1
1.2.	The	e target of this study: Epidermal Growth Factor Receptor (EGFR)	
	tyr	osine kinase	3
1	.2.1.	What are kinases?	3
1	.2.2.	Epidermal Growth Factor Receptor (EGFR) family	6
1	.2.3.	Dual EGFR/HER2 inhibitors: a literature review	18
2. Rat	iona	le and Design	49
2.1.	The	e Rationale behind targeting EGFR	.49
2.2.	The	e Rationale behind dual EGFR/HER2 targeting	.51
2	2.2.1.	Potentiate EGFR signaling pathway blockade	51
2	2.2.2.	Overcome EGFR inhibitors resistance	53
2.3.	Rat	tional Design of the Dual EGFR/HER2 Inhibitors	.56
2	2.3.1.	Analyzing the binding site	56
2	2.3.2.	Structure-activity relationship (SAR) of reported dual EGFR/HER:	2
		inhibitors	57
2	2.3.3.	Proposed design of novel thieno[2,3-d]pyrimidine-based dual	
		EGFR/HER2 inhibitors	60
2	2.3.4.	In silico evaluation of the validity of the design	62
2.4.	Syr	thetic Schemes of the designed compounds	.67
2	2.4.1.	Scheme 1: Preparation of 3,4-disubstituted aniline intermediates.	67
2	2.4.2.	Scheme 2: Preparation of <i>N</i> -substituted-6-(4-	
		nitrophenyl)thieno[2,3-d]pyrimidin-4-amine (XIII - XXI)	69

	2.4.3.	Scheme 3: Preparation of 6-(4-((substituted)amino)phenyl)-A	I -(3-
		chloro-4-(3-(trifluoromethyl)phenoxy)phenyl)thieno[2,3-	
		d]pyrimidin-4-amine (XXII - XXVIII)	70
3.	Results	and Discussion	71
	3.1. Che	emistry	71
	3.1.1.	Scheme 1	71
	3.1.2.	Scheme 2	77
	3.1.3.	Scheme 3	90
	3.2. Bio	logical Evaluation	98
	3.2.1.	Screening for the optimum aniline derivative	99
	3.2.2.	Screening for the optimum solubilizing group	111
	3.3. Mo	lecular Modeling Study	118
	3.3.1.	Docking Study conforming to the observed enzymatic activity.	118
	3.3.2.	Identifying the Molecular properties affecting the cellular	
		activity	128
4.	Conclus	ion	132
5.	Experim	ental	134
	5.1. Che	emistry	134
	5.1.1.	Materials and instrumentation	134
	5.1.2.	Synthesis	135
	5.2. Bio	logical Evaluation	165
	5.2.1.	<i>In vitro</i> EGFR/HER2 tyrosine kinase inhibitory activity	165
	5.2.2.	In vitro antiproliferative activity against NCI panel of 60 cell lin	nes
			166
	5.2.3.	In vitro antiproliferative activity against A431 and MDA-MB-3	61 cell
		lines	168
	5.3. Mo	lecular Modeling Protocols	169
	5.3.1.	Molecular Field Alignment	169
	5.3.2.	Ligand-Pharmacophore Mapping	169
	5.3.3.	Molecular Docking	170
6.	Supplen	nentary Materials	171
7	Referen	res	217

List of Figures

Figure 1 Hallmarks of Cancer2
Figure 2 Mechanisms for sustaining the proliferative signaling in Cancer cells $\dots 3$
Figure 3 Kinase-catalyzed phosphorylation of proteins4
Figure 4 the phylogenetic tree of the Human Kinome5
Figure 5 Classification of Protein Kinases6
Figure 6 Receptor Tyrosine Kinases (RTKs), 20 families6
Figure 7 Epidermal Growth Factor Receptor (EGFR) family members, mechanism
of activation and downstream signaling pathways
Figure 8 EGFR Structure8
Figure 9 Structural differences between EGFR Family members, and different
Growth factor groups that bind to each receptor9
Figure 10 EGFR extracellular domain structure, and mechanism of receptor
dimerization
Figure 11 EGFR Intracellular Kinase domain activation
Figure 12 EGFR kinase domain: Active vs Inactive conformations12
Figure 13 EGFR active conformation: Stabilization of the αC -in conformation by
hydrogen bonding with the αE -helix
Figure 14 EGFR Kinase domain: ATP binding site. (a) EGFR with AMP-PNP (b)
EGFR with Erlotinib (c) EGFR with TAK-285 (d) HER2 with TAK-28514
Figure 15 EGFR (3POZ) and HER2 (3RCD) sequence alignment15
Figure 16 The inability to stabilize the $lpha C$ -in conformation in HER2 kinase domain
due to absence of hydrogen bonding between αC -helix and αE -helix16
Figure 17 Therapeutic targeting approaches of EGFR and HER217
Figure 18 FDA-approved EGFR inhibitors
Figure 19 General layout of dual EGFR/HER2 inhibitors19
Figure 20 EGFR kinase domain co-crystallized with Lapatinib (PDB: 1XKK)21
Figure 21 Design Strategy of Pyrrolo[3,2-d]pyrimidine dual inhibitors22
Figure 22 Proposed binding mode in HER2 back pocket24
Figure 23 Pyrimidine-based dual inhibitors (21-23) binding mode28
Figure 24 Pyrimidine-based inhibitors binding mode31
Figure 25 Proposed hinding mode of compound (23)

Figure 26 Compound (24)-(25) aligned to Lapatinib bioactive conformation32
Figure 27 Compound (27)-(28) aligned to Lapatinib bioactive conformation32
Figure 28 EGFR kinase domain complexed with Compound (29) (3W33)33
$\textbf{Figure 29} \ Conserved Cysteine in the solvent-accessible region in the ATP binding the solvent-accessible region in the accessible region in the a$
site of EGFR family36
Figure 30 Design and Binding mode of covalent irreversible inhibitors36
Figure 31 Mechanism of base-catalyzed Michael addition39
Figure 32 Mutant EGFR vs WT EGFR kinase domain
Figure 33 T790M EGFR kinase domain complexed with Dacomitinib (35)40
Figure 34 Afatinib (5) binding mode
Figure 35 Covalent modification by alkynyl thienopyrimidines44
Figure 36 A compilation of fragments used in dual EGFR/HER2 inhibitors
reported in the literature48
Figure 37 Cancers overexpressing EGFR/HER250
Figure 38 the 10 Most Common Causes of Cancer Death: 2012 Estimates50
Figure 39 Homo- and Heterodimers of the EGFR family of kinases52
Figure 40 Proposed endocytic model of heterodimerization-mediated tuning o
mitogenic signals52
Figure 41 Prevalence rates of the mechanisms of resistance to EGFR inhibitors
53
Figure 42 Summary of mechanisms of resistance to EGFR TKIs55
Figure 43 EGFR Kinase domain: ATP binding site
Figure 44 TAK-285 (10) interactions with EGFR (PDB: 3POZ)58
Figure 45 TAK-285 (10) interactions with HER2 (PDB: 3RCD)
Figure 46 Proposed design of novel dual EGFR/HER2 inhibitors61
Figure 47 Design of dual inhibitors. R¹= Library of selected anilines. R²= Library
of selected solubilizing groups61
Figure 48 Representative designed compounds (pink, blue and violet) aligned to
TAK-285 (grey) using FieldAlign63
Figure 49 Representative designed compounds (pink, cyan and violet) aligned to
Lapatinib (3) (light green) using FieldAlign63
Figure 50 Pharmacophore model assembly65

Figure 51 Aligned Pharmacophore models of EGFR (PDB:3POZ) and HER2 (PDB
3RCD)65
Figure 52 Representative designed compounds mapped to the pharmacophore
model representing the features of dual EGFR/HER2 inhibitors66
Figure 53 Williamson Ether Synthesis71
Figure 54 Béchamp Reduction, mechanism of metal-catalyzed nitro reduction.73
Figure 55 Nucleophilic Aromatic Substitution (S _N Ar)
Figure 56 The mechanism of Enamine formation using DMF-DMA77
Figure 57 Gewald Aminothiophene Synthesis
Figure 58 Mechanism of Gewald Aminothiophene Synthesis using an Enamine 80
Figure 59 Proposed mechanism for cyclizing the 2-aminothiophene-3-
carboxylate into thieno[2,3-d]pyrimidine using formamide81
Figure 60 Proposed mechanism of chlorination of thieno[2,3-d]pyrimidin-4-one
using POCl ₃ 82
Figure 61 Mechanism of Amide formation through EDC/DMAP-assisted coupling
95
Figure 62 Mechanism of mixed anhydride-mediated amide formation95
Figure 63 Urea preparation though isocyanate using triphosgene97
Figure 64 Abstract scenario for the development of dual EGFR/HER2 inhibitors
98
Figure 65 An outline of the stages of development of dual EGFR/HER2 inhibitors
99
Figure 66 One-Dose Mean Graph from the NCI-60 cell lines screening program for
compound (XVIIIa) showing the growth percent of each of the 60 cell lines after
treatment with compound (XVIIIa) at 10 μM concentration105
Figure 67 One-Dose Mean Graph from the NCI-60 cell lines screening program for
compound (XX) showing the growth percent of each of the 60 cell lines after
treatment with compound (XX) at 10 μ M concentration
Figure 68 Mean graph plots of GI ₅₀ values for Gefitinib (NSC 715055) and
Lapatinib (NSC 745750) against NCI-60 cell lines107
Figure 69 Expression of EGFR and HER2 in different cancer cell lines109
Figure 70 Cytotoxic activity of compounds (XIVa, XV, XVIIa, XVIIIa) and their
reduced NH ₂ derivatives (XXII. XIX. XX) against A431 cell line

Figure 71 Cytotoxic activity of compounds (XIVa, XV, XVIIa, XVIIIa) and their
reduced NH ₂ derivatives (XXII, XIX, XX) against MDA-MB-361 cell line111
Figure 72 Cytotoxic activity of compounds (XXII-XXVIII) against A431 cell line
116
Figure 73 Cytotoxic activity of compounds (XXII-XXVIII) against MDA-MB-361
cell line116
Figure 74 The alignment between the co-crystallized bioactive conformer of TAK-
285 (green) and the pose of TAK-285 retrieved from docking using CDOCKER
119
Figure 75 A heat map representing the Correlation Matrix between different
molecular properties and cellular activity
Figure 76 The correlation between the cellular activity and ALogP of the
compounds131
Figure 77 The correlation between the cellular activity and PSA of the compounds
Figure 78 A summary of the design, screening and identification of dual
EGFR/HER2 inhibitors

List of Tables

Table 1 Biological Data for Pyrrolo[3,2-d]pyrimidines (10-13)23
Table 2 Biological Data for Pyrrolo[2,1-f][1,2,4]triazines (17-19)26
Table 3 Biological Data for Compound (20) 27
Table 4 Biological Data for Pyrimidine-based inhibitors (21-28) 29
Table 5 Biological Data for Compound (29) 33
Table 6 Biological Data for miscellaneous dual inhibitors (30-32) 34
Table 7 Biological Data for Quinoline-3-carbonitriles (33-34) 38
Table 8 Biological Data for Quinazoline irreversible dual inhibitors (35-41) 41
Table 9 Biological Data for Thienopyrimidine irreversible dual inhibitors (42-44)
Table 10 Biological Data for Compound (45)
Table 11 Gewald Aminothiophene Synthesis: Components and Conditions 79
Table 12 Summary of reported chlorinating agents and conditions for
chlorinating thieno[2,3-d]pyrimidinones82
Table 13 Summary of reported conditions for nucleophilic substitution of 4-
chlorothieno[2,3-d]pyrimidine with aniline derivatives83
Table 14 Summary of reagents and conditions for acetylation of amino groups 89
Table 15 Reagents and conditions for Sulfonation of amines91
Table 16 Reagents and conditions for Carbamate synthesis92
Table 17 Reagents and conditions for amide synthesis94
Table 18 Approaches, reagents and conditions for Urea synthesis97
Table 19 % inhibitory effect of compounds (XIII-XVIII) on EGFR/HER2 kinase
activities at 10 μM100
Table 20 % inhibitory effect of compounds (XIVa, XVIIa, XVIIIa) and their
reduced NH2 derivatives (XXII, XIX, XX) on EGFR/HER2 kinase activities at 10
μΜ108
Table 21 Cytotoxic activity (IC50) of compounds (XIVa, XV, XVIIa, XVIIIa) and
their reduced NH ₂ derivatives (XXII, XIX, XX) against A431 and MDA-MB-361
110
Table 22 % inhibitory effect of compounds (XXII-XXVIII) on EGFR/HER2 kinase
activities at 10 μM112

Table 23 Cytotoxic activity (IC50) of compounds (XXII-XXVIII) against A431 and
MDA-MB-361115
Table 24 IC50 values of compounds (XXII-XXIV, XXVIIIa,b) against EGFR/HER2
117
Table 25 Results of the Molecular Docking Study of compounds (XIII-XVIII, XXIV)
in EGFR (PDB: 3POZ) and HER2 (PDB: 3RCD) binding sites compared to TAK-
285 (10)
Table 26 Calculated Molecular properties and Cellular activities of the
compounds tested on A431 cell line
Table 27 Biological activities of the three identified dual EGFR/HER2 inhibitors
133

List of Abbreviations

ADMET, Absorption Distribution Metabolism Excretion and Toxicity

ADP, Adenosine diphosphate

Akt, Protein kinase B (PKB), also known as Akt

ALogP, Atomic logP (the logarithm of 1-octanol/water partition coefficient)

AMBER, Assisted Model Building with Energy Refinement (force field)

AMP-PNP, Adenylyl-imidodiphosphate, an adenosine triphosphate analog containing a P-N-P linkage, ATP[β,γ -NH]

ATP, Adenosine triphosphate

BOP, (Benzotriazol-1-yloxy)tris(dimethylamino)phosphonium hexafluorophosphate

BRAF, v-Raf murine sarcoma viral oncogene homolog B

BSA, bovine serum albumin

Cbl, Casitas B-lineage Lymphoma

CDI, 1,1'-Carbonyldiimidazole

CDOCKER, CHARMm-based docker

CHARMm, Chemistry at Harvard Macromolecular Mechanics (force field)

c-MET, cellular mesenchymal to epithelial transition factor

¹³C NMR, Carbon-13 Nuclear Magnetic Resonance

DBU, 1,8-Diazabicyclo[5.4.0]undec-7-ene

DCC, *N*,*N*′-Dicyclohexylcarbodiimide

DCM, dichloromethane

DIEA, synonym for DIPEA (*N*,*N*-Diisopropylethylamine, or Hünig's base)

DIPEA, *N*,*N*-Diisopropylethylamine, or Hünig's base

DM, double mutant

DMAP, 4-(Dimethylamino)pyridine

DMF, Dimethylformamide

DMF-DMA, *N*,*N*-dimethylformamide dimethyl acetal

DMSO, Dimethyl sulfoxide

DPPA, Diphenylphosphoryl Azide

DTT, Dithiothreitol

EDCI, *N*-Ethyl-N'-(3-dimethylaminopropyl)carbodiimide

EGFR, Epidermal Growth Factor Receptor

EI-MS, Electron-Impact Ionization Mass Spectrometry

ErbB, avian erythroblastosis oncogene B

EWG, Electron Withdrawing Group

FDA, Food and Drug Administration

GI₅₀, concentration for 50% of maximal inhibition of cell proliferation

HATU, 1-[Bis(dimethylamino)methylene]-1*H*-1,2,3-triazolo[4,5-*b*]pyridinium 3-oxide hexafluorophosphate

HB, hydrogen bond

 $\label{eq:hbtt} \textbf{HBTU}, 2\text{-}(1H\text{-}benzotriazol\text{-}1\text{-}yl)\text{-}1,1,3,3\text{-}tetramethyluronium} \\ \text{hexafluorophosphate}$

HER2, human epidermal growth factor receptor 2

¹H NMR, Proton Nuclear Magnetic Resonance

HOAt, 1-Hydroxy-7-azabenzotriazole

HOBt, *N*-Hydroxybenzotriazole

IC₅₀, half maximal inhibitory concentration

K-RAS, Kirsten rat sarcoma oncogene

m/z, mass-to-charge ratio

M+, Molecular ion

MAPK, mitogen-activated protein kinase

MD, Molecular Dynamics

MeCN, Acetonitrile

MEK, MAPK/ERK kinase

MP, melting point

mTOR, mechanistic target of rapamycin

Mwt, Molecular Weight

NSCLC, non-small cell lung cancer

Nü, Nucleophile

OD, Optical Density

PDB, protein data bank

PI, Pseudo-irreversible

PI3K, Phosphoinositide 3-kinase

PIK3CA, phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha

PK, Pharmacokinetic

PLCγ, phospholipase C gamma

ppm, parts per million

PSA, Polar Surface Area

PTEN, Phosphatase and tensin homolog

PyBOP, (Benzotriazol-1-yloxy)tripyrrolidinophosphonium hexafluorophosphate

RAF, Rapidly Accelerated Fibrosarcoma proto-oncogene

RAS, Rat sarcoma oncogene

RMSD, Root Mean Square Deviation

RTK, receptor tyrosine kinase

SAR, structure-activity relationship

S_N**2**, bimolecular nucleophilic substitution

S_N**Ar**, nucleophilic aromatic substitution

SOS, Son of Sevenless genes

SRB, sulforhodamine B

T3P, Propylphosphonic anhydride

TBTU, 2-(1*H*-Benzotriazole-1-yl)-1,1,3,3-tetramethylaminium tetrafluoroborate

TEA, Triethylamine

THF, Tetrahydrofuran

TKIs, tyrosine kinase inhibitors

TLC, Thin-layer chromatography

TMLR, T790M/L858R

TMS, Tetramethylsilane

Tris, tris(hydroxymethyl)aminomethane

WT, wild type