

## The Effect of Minor Oxide Components on Reduction of El-Baharia Iron Ore Agglomerates via Hydrogen or Coke

# Thesis Submitted For Ph.D. Degree in Chemistry

By
Inass Ashraf Khalil Sayed Nafeaa
M.Sc. in Chemistry (2013)

To
Chemistry Department, Faculty of Science,
Ain Shams University
(2016)

## The Effect of Minor Oxide Components on Reduction of El-Baharia Iron Ore Agglomerates via Hydrogen or Coke

Thesis Submitted

For

PhD. Degree in Chemistry

By
Inass Ashraf Khalil Sayed Nafeaa
M.Sc. in Chemistry (2013)

To

Chemistry Department, Faculty of Science,
Ain Shams University

Supervisors:

Prof. Sayed Sabet Abd El-Rehim

Professor of Physical Chemistry, faculty of Science, Ain Shams University

Prof. Mohamed El-Menshawi Hussein Shalabi

Professor at CMRDI

Prof. Mohamed Gamal Khalifa

Professor El-Tabbin Metallurgical Institute

Prof. Naglaa Ahmed El-Hussiny

Professor at CMRDI

#### **Approval Sheet**

Name : Inass Ashraf Khalil Sayed Nafeaa

**Degree** : Ph.D. in Chemistry

**Thesis Title:** The Effect of Minor Oxide Components on Reduction of El-Baharia Iron Ore Agglomerates via Hydrogen or Coke.

#### The thesis has been approved by

#### Supervisors:

Signature

#### 1-Prof. Sayed Sabet Abd El-Rehim

Professor of Physical Chemistry, Faculty of Science, Ain Shams University

#### 2-Prof. Mohamed El-Menshawi Hussein Shalabi

Professor at CMRDI

# **3-Prof. Mohamed Gamal Khalifa**Professor El-Tabbin Metallurgical Institute

#### 4-Prof. Naglaa Ahmed El-Hussiny

Professor at CMRDI

Chemistry Department Header Prof.Dr. Ibrahim H.A. Badr

#### Acknowledgement

I really want to give my deepest gratitude to my advisor Prof. S.S. Abd El-Rehim for his support and confidence during the full development of this study. I also want to thank Prof. M.G Khalifa and Prof. N.A. El-**Hussiny** my co-advisor for her continuous supervision of the experimental work for this study. Thanks are due also to Prof. M.E.H **Shalabi** for his continuous supervision of this study. I would like to thank all the Ain Shams University members and graduate students for their friendship shown during the time of this study. Finally, all my gratitude to my family: my father, my mother, and my brother for their love, patience, encouragement and prayers.

#### **Abstract**

- ⇒ These investigations studied the effect of dolomite or lime addition to the Egyptian iron ore raw material on the physicochemical properties of its pellets in green and indurate form. The effect of these additions on the degree of reduction was also studied. The results indicated that the addition of (2%-8%) dolomite or lime decreases the mechanical properties of both green and indurate pellets. The reduction of these produced pellets via hydrogen was also studied and the model of reduction is shown in this work.
- ⇒ In these investigations the effect of dolomite addition to oxide raw material on the physicochemical properties of its briquettes in a green form and indurate form was also studied. And the effect of this addition on the degree of reduction also was investigated. The results indicated that the addition of (2%-8%) dolomite improves the mechanical strength of the green briquettes the mechanical strength of indurate The reduction of these briquettes decreases. hydrogen was studied and the model of reduction was illustrated in this investigation.
- ⇒ This investigation studied the effect of lime addition to iron ore raw material on the physicochemical properties of its green briquette forms and indurate forms. The effect of this addition on the degree of reduction was also studied. The results indicated that the addition of (2%-8%) lime improves the mechanical properties of the briquettes in both green and indurate forms. Also the reduction of these briquettes via hydrogen was studied and the model of reduction was given in this work.

## **Abbreviations**

| °C  | Celsius degree |
|-----|----------------|
| °K  | Kelvin degree  |
| cm  | centimeter     |
| g   | gram           |
| h   | hour           |
| j   | joule          |
| k   | kilo           |
| 1   | liter          |
| min | minutes        |
| mm  | millimeter     |
| S   | second         |
| nm  | nanometer      |
| ml  | mille          |
| mg  | mille gram     |
| MPa | Mega Pascal    |
| μm  | micrometer     |

## Content

| Contont                                             |
|-----------------------------------------------------|
| Chapter one                                         |
| Introduction and literature survey                  |
| 1.1 Introduction (1)                                |
| 1.2 Literature survey(1)                            |
| 1.3 Gas-Solid Reactions(14)                         |
| 1.3.1 Mechanism of Gas-Solid Reactions (14)         |
| 1.3.2 Models Proposed for Gas-Solid Reaction(15)    |
| 1.3.2.1 Gaseous Boundary Layer Diffusion (15)       |
| 1.3.2.2 Gaseous Diffusion through the Pores of the  |
| Product Layers(16)                                  |
| 1.3.2.3 Control by Chemical Reaction(17)            |
| 1.3.2.4 Mixed Mechanism Controlling(18)             |
| 1.3.2.5 Topo-Chemical Reactions(18)                 |
| 1.3.2.6 Effect of Temperature(19)                   |
| 1.4 The aim of this thesis(19)                      |
| · ,                                                 |
| Chapter two                                         |
| Experimental work                                   |
| 2.1 Materials(20)                                   |
| 2.1.1 El-Baharia Egyptian iron ore (20)             |
| 2.1.2 Dolomite ore(21)                              |
| 2.1.3 Lime ore(21)                                  |
| 2.2 Experimental procedure (24)                     |
| 2.2.1 Preparation of samples in the form of         |
| briquettes(24)                                      |
| 2.2.2 Preparation of samples in the form of         |
| pellet(25)                                          |
| 2.2.3 Determination of the Quality of briquettes or |
| pellets (27)                                        |
| 2.2.3.1 Drop damage resistance (27)                 |
| 2.2.3.2 Compressive strength test (27)              |
| 2.2.3.3 Reduction procedure by hydrogen (27)        |
| 2.2.3.4 Reduction procedure with solid carbon (29)  |
| Chapter Three                                       |

## Results and Discussion

## 3.1 Results of El-Baharia iron ore briquette samples containing dolomite ........(30)

| 3.1.1 Effect of dolomite addition on physical                                                                                      |
|------------------------------------------------------------------------------------------------------------------------------------|
| properties of green iron ore briquette samples without                                                                             |
| sintering(30)                                                                                                                      |
| 3.1.2 Effect of dolomite addition on physical                                                                                      |
| properties of sintered green briquettes at different<br>temperatures(31)<br>3.1.3 Effect of dolomite addition on reduction of iron |
| temperatures(31)                                                                                                                   |
| 3.1.3 Effect of dolomite addition on reduction of iron                                                                             |
| ore sintered at 1200°C(32)                                                                                                         |
| 3.1.4 Effect of temperature variation on the reduction                                                                             |
| of iron ore containing dolomite(33)                                                                                                |
| 3.1.5 Kinetics reduction of iron ore briquettes                                                                                    |
| containing dolomite(35)                                                                                                            |
| 3.1.6 X-Ray diffraction of the reduced iron ore (41)                                                                               |
| 3.2 Results of El-Baharia iron ore briquette samples                                                                               |
| containing lime (43)                                                                                                               |
| 3.2.1 Effect of lime addition on physical properties of green briquettes(43)                                                       |
|                                                                                                                                    |
| 3.2.2 Effect of lime addition on physical properties of                                                                            |
| the briquettes sintered at different temperatures(44)                                                                              |
| 3.2.3 Effect of lime addition and sintering                                                                                        |
| temperatures on the degree of reduction (47)                                                                                       |
| 3.2.4 Effect of different temperatures on the                                                                                      |
| percentage of reduction of briquette samples sintered                                                                              |
| at 1200°C (49)<br>3.2.5 Kinetics reduction of iron ore briquettes in                                                               |
|                                                                                                                                    |
| absence and presence of 4% and 8% lime (51)                                                                                        |
| 3.2.6 X-Ray diffraction of the reduced briquette                                                                                   |
| containing 8% lime(60)                                                                                                             |
| 3.3 Results of El-Baharia iron ore pellet samples                                                                                  |
| containing dolomite(61)                                                                                                            |
| 3.3.1 Quality of the produced green pellets (61)                                                                                   |
| 3.3.2 Effect of sintering temperatures on strength of                                                                              |
| pellets of iron ore containing different amounts of                                                                                |
| dolomite                                                                                                                           |
| 3.3.3 Effect of dolomite addition on the reduction of                                                                              |
| iron ore at constant hydrogen flow rate at                                                                                         |
| 900°C                                                                                                                              |
| 3.3.4 Effect of temperature change on the reduction                                                                                |
| percentage of iron ore(64)                                                                                                         |

| References | (1 | .( | ) | 8 | ;) |  |
|------------|----|----|---|---|----|--|
|------------|----|----|---|---|----|--|

## **List of Figures**

| Fig.(1.1) Diagram of iron ore reduction mechanism(14)      |
|------------------------------------------------------------|
| Fig.(2.1) X-Ray analysis of El-Baharia iron ore(21)        |
| Fig.(2.2) X-Ray analysis of Dolomite ore(23)               |
| Fig.(2.3) X-Ray analysis of Lime ore(24)                   |
| Fig.(2.4) MEGA.KSC-10 hydraulic press(25)                  |
| Fig.(2.5) Disc pelletizer equipment(26)                    |
| Fig.(2.6) A schematic diagram of thermo gravimetric        |
| apparatus(28)                                              |
| Fig.(3.1) Effect of addition of varying percentages of     |
| dolomite on the drop damage resistance of green iron       |
| ore briquettes(30)                                         |
| Fig.(3.2) Effect of addition varying percentages of        |
| dolomite on the cold compressive strength of green         |
| iron ore briquettes(31)                                    |
| Fig.(3.3) Effect of different sintering temperatures on    |
| the compressive strength of the iron ore briquettes        |
| containing different amounts of dolomite(32)               |
| Fig.(3.4) Effect of dolomite addition on reduction of      |
| iron ore briquettes sintered at 1200°C(33)                 |
| Fig.(3.5) Effect of different temperatures on the          |
| reduction process for briquettes containing 4%             |
| dolomite(34)                                               |
| Fig.(3.6) Effect of different temperatures on the          |
| reduction process for briquettes containing 8%             |
| dolomite(34)                                               |
| Fig.(3.7) Relation between $1-(1-R)^{1/2}$ against time at |
| different temperatures containing 4%dolomite(36)           |
|                                                            |

| Fig.(3.8) Relation between $1-(1-R)^{1/2}$ against time at                                                                     |
|--------------------------------------------------------------------------------------------------------------------------------|
| different temperatures containing 8%dolomite(36)                                                                               |
| Fig.(3.9) Relation between the reciprocal of absolute                                                                          |
| temperature 1/T, K-1 and Ln k(37)                                                                                              |
| Fig.(3.10) Relation between the reciprocal of absolute                                                                         |
| temperature 1/T, K-1 and Ln k(38)                                                                                              |
| $\frac{1}{2}$                                                                                                                  |
| temperature 1/T, K-1 and Ln k(38)<br>Fig.(3.11) Relation between $1 - \frac{2}{3}R - (1 - R)^{2/3}$ against                    |
| time of reduction at different temperatures for                                                                                |
| briggettes containing 40/ delemits (20)                                                                                        |
| briquettes containing 4% dolomite(39)                                                                                          |
| Fig.(3.12) Relation between $1 - \frac{2}{3}R - (1 - R)^{\frac{2}{3}}$ against time of reduction at different temperatures for |
| Fig.(3.12) Relation between against                                                                                            |
| time of reduction at different temperatures for                                                                                |
| briquettes containing 8% dolomite(39)                                                                                          |
| Fig.(3.13) Relation between the reciprocal of absolute                                                                         |
| temperature $1/T$ , $K^{-1}$ and $Ln k$ (40)                                                                                   |
| Fig.(3.14) Relation between the reciprocal of absolute                                                                         |
| temperature $1/T$ , $K^{-1}$ and $Ln k(41)$                                                                                    |
| Fig.(3.15) X-Ray of reduced iron ore sample                                                                                    |
| containing 4% dolomite by hydrogen at 950°C for 30                                                                             |
| min(42) Fig.(3.16) X-Ray of reduced iron ore sample                                                                            |
| Fig.(3.16) X-Ray of reduced iron ore sample                                                                                    |
| containing 8% dolomite by hydrogen at 950°C at 30                                                                              |
| min(42)                                                                                                                        |
| Fig.(3.17) Effect of lime addition on drop damage                                                                              |
| resistance of green iron ore briquette(43)                                                                                     |
| Fig.(3.18) Effect of lime addition on cold compressive                                                                         |
| strength of green iron ore briquette(44)                                                                                       |
| Fig.(3.19) Effect of adding different percentages of                                                                           |
| lime on the compressive strength of the briquette                                                                              |
| sample sintered at different temperatures(45)                                                                                  |
| Fig.(3.20) X-Ray of iron ore briquette sample                                                                                  |
| containing 8% lime which sintered at 1200°C(46)                                                                                |
| Fig.(3.21) X-Ray of iron ore briquette sample                                                                                  |
| containing 8% lime which sintered at 900°C(46)                                                                                 |
| Fig.(3.22) Reduction of iron ore briquettes sintered at                                                                        |
| 900°C containing different amounts of lime(47)                                                                                 |
| Fig.(3.23) Reduction of iron ore briquettes sintered at                                                                        |
| 1000°C containing different amounts of lime(48)                                                                                |
|                                                                                                                                |

| Fig.(3.24) Reduction of iron ore briquettes sintered at                                                                         |
|---------------------------------------------------------------------------------------------------------------------------------|
| 1100°C containing different amounts of lime(48)                                                                                 |
| Fig.(3.25) Reduction of iron ore briquettes sintered at                                                                         |
| 1200°C containing different amounts of lime(49)                                                                                 |
| Fig.(3.26) Effect of different temperatures on the                                                                              |
| percentage of reduction of iron ore briquettes                                                                                  |
| containing zero% lime sintered at 1200°C(50)                                                                                    |
| Fig.(3.27) Effect of different temperatures on the                                                                              |
| percentage of reduction of iron ore briquettes                                                                                  |
| containing 4% lime sintered at 1200°C(50)                                                                                       |
| Fig.(3.28) Effect of different temperatures on the                                                                              |
| percentage of reduction of iron ore briquettes                                                                                  |
| containing 8% lime sintered at 1200°C(51)                                                                                       |
| Fig.(3.29) Relation between $1 - \frac{2}{3}R - (1 - R)^{2/3}$ against time of reduction for different temperatures for iron    |
| Fig.(3.29) Relation between $1 - \frac{1}{3}R - (1 - R)^{-3}$ against                                                           |
| time of reduction for different temperatures for iron                                                                           |
| ore briquette containing 0% lime(52)                                                                                            |
| 2/_                                                                                                                             |
| Fig.(3.30) Relation between $1 - \frac{2}{3}R - (1 - R)^{2/3}$ against                                                          |
| time of reduction for different temporatures for incre                                                                          |
| time of reduction for different temperatures for iron ore briquette containing 4% lime(52)                                      |
| 2 / (52)                                                                                                                        |
| Fig.(3.31) Relation between $1 - \frac{2}{3}R - (1 - R)^{2/3}$ against                                                          |
|                                                                                                                                 |
| time of reduction for different temperatures for iron                                                                           |
| ore briquette containing 8% lime(53)                                                                                            |
| Fig.(3.32) Relation between Ln k and $1/T$ , $K^{-1}$ (54)                                                                      |
| Fig.(3.33) Relation between Ln k and $1/T$ , $K^{-1}$ (54)                                                                      |
| Fig.(3.34) Relation between Ln k and 1/T, K <sup>-1</sup> (55)                                                                  |
| Fig.(3.35) Relation between $1-(1-R)^{1/2}$ against time at                                                                     |
| different temperatures of briquette containing zero%                                                                            |
| lime(56)                                                                                                                        |
| Fig.(3.36) Relation between $1-(1-R)^{1/2}$ against time at                                                                     |
| different temperatures of briquette containing 4%                                                                               |
|                                                                                                                                 |
| lime(56)                                                                                                                        |
| lime(56) Fig.(3.37) Relation between $1-(1-R)^{1/2}$ against time at                                                            |
| lime(56) Fig.(3.37) Relation between 1-(1-R) $^{1/2}$ against time at different temperatures of briquette containing 8%         |
| lime(56) Fig.(3.37) Relation between $1-(1-R)^{1/2}$ against time at different temperatures of briquette containing 8% lime(57) |
| lime(56) Fig.(3.37) Relation between 1-(1-R) $^{1/2}$ against time at different temperatures of briquette containing 8%         |

| Fig.(3.40) Relation between Ln k and $1/T$ , $K^{-1}$ (59)      |
|-----------------------------------------------------------------|
| Fig.(3.41) X-Ray of iron ore briquette sample                   |
| containing 8% lime sintered at 1200°C and reduced               |
| at 950°C for 30 min(60)                                         |
| Fig.(3.42) Relation between drop damage resistance of           |
| the green iron ore pellets and the amount of dolomite           |
| added(61)                                                       |
| Fig.(3.43) Relation between cold compressive strength           |
| of the green iron ore pellets and the amount of                 |
| dolomite added(62)                                              |
| Fig.(3.44) Effect of the sintering temperatures on the          |
| compressive strength of iron ore pellets with different         |
| amounts of dolomite(63)                                         |
| Fig.(3.45) Effect of dolomite amount added to iron ore          |
| pellets on the percentage of reduction(64)                      |
| Fig.(3.46) Effect of temperature on the reduction of El-        |
| Baharia iron ore pellets containing 4% dolomite(65)             |
| Fig.(3.47) Effect of temperature on the reduction of El-        |
| Baharia iron ore pellets containing 8% dolomite(65)             |
| Fig.(3.48) Relation between $1-2/3R-(1-R)^{2/3}$ against        |
| time of reduction at different temperatures containing          |
| 4% dolomite added to iron ore(66)                               |
| Fig.(3.49) Relation between 1-2/3R-(1-R) <sup>2/3</sup> against |
| time of reduction at different temperatures for $8\%$           |
| dolomite added to iron ore(67)                                  |
| Fig.(3.50) Natural logarithms of Ln k against 1/T,              |
| $k^{-1}$ (68)                                                   |
| Fig.(3.51) Natural logarithms of Ln k against 1/T, K-1(68)      |
| K <sup>-1</sup> (68)                                            |
| Fig.(3.52) Relation between $1-(1-R)^{1/3}$ and time of         |
| reduction at different temperatures for iron ore pellets        |
| containing 4% dolomite(69)                                      |
| Fig.(3.53) Relation between $1-(1-R)^{1/3}$ and time of         |
| reduction at different temperatures for iron ore pellets        |
| containing 8% dolomite(70)                                      |
| Fig.(3.54) Natural logarithms of Ln k against 1/T,              |
| $k^{-1}$ (71)                                                   |
| Fig.(3.55) Natural logarithms of Ln k against 1/T,              |
| $k^1$ (71)                                                      |

| Fig.(3.56) Relation between $[1-(1-R)^{1/3}]^2$ and time of                                                                                                                                                                                                                                                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| reduction at different temperatures for iron ore pellets                                                                                                                                                                                                                                                   |
| containing 4% dolomite(72)                                                                                                                                                                                                                                                                                 |
| Fig.(3.57) Relation between $[1-(1-R)^{1/3}]^2$ and time of                                                                                                                                                                                                                                                |
| reduction at different temperatures for iron ore pellets                                                                                                                                                                                                                                                   |
| containing 8% dolomite(73)                                                                                                                                                                                                                                                                                 |
| Fig.(3.58) Natural logarithms of Ln k against 1/T,                                                                                                                                                                                                                                                         |
| k-1(74)                                                                                                                                                                                                                                                                                                    |
| Fig.(3.59) Natural logarithms of Ln k against 1/T,                                                                                                                                                                                                                                                         |
| $k^{-1}$ (74)<br>Fig.(3.60) X-Ray of the reduced pellets of iron ore                                                                                                                                                                                                                                       |
| Fig.(3.60) X-Ray of the reduced pellets of iron ore                                                                                                                                                                                                                                                        |
| containing 4% dolomite by hydrogen at 950°C for 30                                                                                                                                                                                                                                                         |
| min(75) Fig.(3.61) X-Ray of the reduced pellets of iron ore                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                            |
| containing 8% dolomite by hydrogen at 950°C for 30                                                                                                                                                                                                                                                         |
| min(76)                                                                                                                                                                                                                                                                                                    |
| Fig.(3.62) Effect of adding varying amounts of lime on                                                                                                                                                                                                                                                     |
| the drop damage resistance of green iron ore                                                                                                                                                                                                                                                               |
| pellets(77) Fig.(3.63) Effect of adding varying amounts of lime on                                                                                                                                                                                                                                         |
| Fig.(3.63) Effect of adding varying amounts of lime on                                                                                                                                                                                                                                                     |
| the cold compressive strength of the green iron ore                                                                                                                                                                                                                                                        |
| pellets(78)                                                                                                                                                                                                                                                                                                |
| Fig.(3.64) Effect of lime addition on compressive                                                                                                                                                                                                                                                          |
| strength of the sintered pellets at different                                                                                                                                                                                                                                                              |
| temperatures(79)                                                                                                                                                                                                                                                                                           |
| Fig.(3.65) The reduction percentage of iron ore pellets                                                                                                                                                                                                                                                    |
| containing lime (sintered at 1200°C) by hydrogen at                                                                                                                                                                                                                                                        |
| 900°C(80)                                                                                                                                                                                                                                                                                                  |
| Fig.(3.66) Effect of temperature on the reduction of                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                            |
| iron ore pellets containing zero% lime(81)                                                                                                                                                                                                                                                                 |
| Fig.(3.67) Effect of temperature on the reduction of                                                                                                                                                                                                                                                       |
| Fig.(3.67) Effect of temperature on the reduction of iron ore pellets containing 4% lime(81)                                                                                                                                                                                                               |
| Fig.(3.67) Effect of temperature on the reduction of iron ore pellets containing 4% lime(81) Fig.(3.68) Effect of temperature on the reduction of                                                                                                                                                          |
| Fig.(3.67) Effect of temperature on the reduction of iron ore pellets containing 4% lime(81) Fig.(3.68) Effect of temperature on the reduction of iron ore pellets containing 8% lime(82)                                                                                                                  |
| Fig.(3.67) Effect of temperature on the reduction of iron ore pellets containing 4% lime(81) Fig.(3.68) Effect of temperature on the reduction of iron ore pellets containing 8% lime(82)                                                                                                                  |
| Fig.(3.67) Effect of temperature on the reduction of iron ore pellets containing 4% lime(81) Fig.(3.68) Effect of temperature on the reduction of iron ore pellets containing 8% lime(82) Fig.(3.69) Relation between $1 - (1 - R)^{1/3}$ against time                                                     |
| Fig.(3.67) Effect of temperature on the reduction of iron ore pellets containing 4% lime(81) Fig.(3.68) Effect of temperature on the reduction of iron ore pellets containing 8% lime(82) Fig.(3.69) Relation between $1 - (1 - R)^{1/3}$ against time of reduction at different temperatures for iron ore |
| Fig.(3.67) Effect of temperature on the reduction of iron ore pellets containing 4% lime                                                                                                                                                                                                                   |
| Fig.(3.67) Effect of temperature on the reduction of iron ore pellets containing 4% lime(81) Fig.(3.68) Effect of temperature on the reduction of iron ore pellets containing 8% lime(82) Fig.(3.69) Relation between $1 - (1 - R)^{1/3}$ against time of reduction at different temperatures for iron ore |

| 1/_                                                                                                                                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------|
| Fig.(3.71) Relation between $1 - (1 - R)^{1/3}$ against time of reduction at different temperatures for iron ore pellets containing 4% lime(84) |
| Fig.(3.72) Natural logarithms of k against $1/T$ , $k^{-1}$ (85)                                                                                |
| k-1                                                                                                                                             |
| Fig.(3.75) Relation between $1-2/3R-(1-R)^{2/3}$ against                                                                                        |
| time of reduction at different temperatures containing zero% lime added to iron ore(87)                                                         |
| Fig.(3.76) Natural logarithms of k against $1/T$ , $k^{-1}$ (88)                                                                                |
| Fig.(3.77) Relation between $1-2/3R-(1-R)^{2/3}$ against                                                                                        |
| time of reduction at different temperatures containing 4% lime added to iron ore(88)                                                            |
| Fig.(3.78) Natural logarithms of k against 1/T,                                                                                                 |
| $k^{-1}$ (89)<br>Fig.(3.79) Relation between 1-2/3R-(1-R) <sup>2/3</sup> against                                                                |
| time of reduction at different temperatures containing                                                                                          |
| 8% lime added to iron ore(89)                                                                                                                   |
| Fig.(3.80) Natural logarithms of k against 1/T, k-1(90)                                                                                         |
| Fig.(3.81) X-Ray of the reduced pellets of iron ore                                                                                             |
| containing 4% lime by hydrogen at 950°C for 30 min(91)                                                                                          |
| Fig.(3.82) X-Ray of the reduced pellets of iron ore                                                                                             |
| containing 8% lime by hydrogen at 950°C for 30                                                                                                  |
| min(91) Fig.(3.83) Effect of amount of coke breeze on the                                                                                       |
| reduction of iron ore briquette containing 4% lime at 900°C(92)                                                                                 |
| Fig.(3.84) Effect of temperature on the degree of                                                                                               |
| reduction by coke breeze of iron ore briquette                                                                                                  |
| containing 4% lime(93)                                                                                                                          |