

Separation and Identification of the Components of Acacia Sieberiana Stem Park Plant Extract and Study its Safety as a Treatment Drug of Diarrhea

A thesis submitted for the fulfillment of Master Degree of Science in Analytical Chemistry

(M.SC)

BY

Hany Fathy Ahmed Elmezian

B. Sc. of Chemistry (2006) Faculty of Science Ain shams University

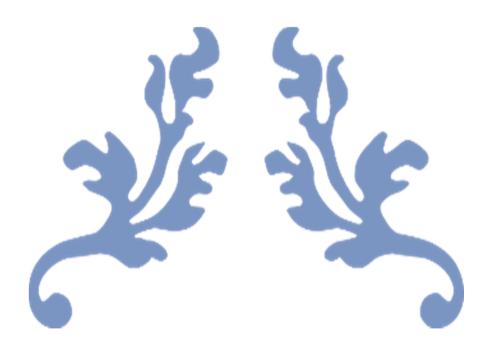
Separation and Identification of the Components of Acacia Sieberiana Stem Park Plant Extract and Study its Safety as a Treatment Drug of Diarrhea

BY

Hany Fathy Ahmed Elmezian

B. Sc. Chemistry (2006)

This thesis submitted for the fulfillment of Master Degree of Science in inorganic and Analytical Chemistry and has been approved by:


Prof.Dr. Fatma M. El Zawawy	•••••
Professor of Inorganic and Analy Faculty of science, Ain shams Un	•
Dr. Salah M. EL-Helbawy	•••••
Forensic Medical Authority, Tox department, ministry of Justice,	3.
Dr. Mohamed Mostafa	
Forensic Medical Authority, Tox ministry of Justice, Cairo, Egypt	3 . 3 1
Date of examination: / /	

Head of Chemistry Department

Prof. Dr. Ibrahim H. A. Badr

This thesis has not been previously submitted for any degree at this or any other university.

Hany Fathy Ahmed Elmezian

Acknowledgement

First of all, great thanks and praise to *Allah* for giving me prosperity and strength to fulfill this work.

All appreciation and dept are to *Prof. Dr. Fatma M. El Zawawy*; Professor of Inorganic and Analytical Chemistry Department, Faculty of science, Ain shams University, for her valuable supervising, encouragement and sincere help through all stages of the study.

All gratitude and thanks are to *Dr. Salah M. EL-Helbawy*; Forensic Medical Authority, Toxicology and drug department, ministry of Justice, Cairo, Egypt, for his much appreciated Supervising, effective guidance, offering facilities and fruitful discussions in all steps of this study.

Special thanks and are to *Dr. Mohamed Mostafa*; Forensic Medical Authority, Toxicology and drug department, ministry of Justice, Cairo, Egypt, for following up the details and his valuable help until the completion of this work. Many thanks are to the Chairman, Professors, doctors and staff members of Chemistry Department, Faculty of Science, Ain Shams University.

Special gratitude and acknowledgement are to staff of the Forensic Medical Authority, Toxicology and drug department, ministry of Justice, Cairo, Egypt, for all the assistance they rendered and for providing all the facilities and support used to carry out the work.

Contents

Title		page
	Abstract	
	Chapter I	
	INTRODUCTION AND LITERATURE SURVEY	1
I.1.	Introduction of Acacia Sieberiana	1
I.1.1.	Plant Distribution	3 5
I.1.2.	Description and Name Derivation	
I.1.3.	Phytochemistry of Acacia Sieberiana	6
I.1.4.	Medicinal uses of Acacia Sieberiana	9
I.1.5.	Toxicity of Acacia Sieberiana	10
I.1.5.1.	Toxicity testing	11
I.2.	Application of Gas Chromatography – Mass Spectrometry (GC - MS) in phytochemical analysis	15
I.2.1.	phytochemical analysis of a number of medicinal plants similar in activity to Acacia Sieberiana have been studied by GC-MS and reported in Literature	16
I.2.1.1.	Sheema et al.; 2014	16
I.2.1.2.	V Baby et al.; 2015	18
I.2.1.3.	S.Sulochana et al.; 2016	20
I.3.	Introduction of Haematology	22
I.3.1.	Functions of Blood	23
I.3.2.	Components of Blood	24
I.3.2.1.	White Blood Cells (WBCs)	25
I.3.2.2.	Red Blood Cells (RBC)	26
I.3.2.2.1.	Hemoglobin (Hb)	27
I.3.2.2.2.	Packed Cell Volume (Hematocrit) (PCV)	28
I.3.2.2.3.	Mean Cell Volume (MCV)	29
I.3.2.2.4.	Mean Cell Hemoglobin (MCH)	30
I.3.2.2.5.	Mean Corpuscular Hemoglobin Concentration (MCHC)	30

I.3.2.2.6.	Red Blood Cell Distribution Width (RDW)	31
I.3.2.3.	Platelets	32
I.3.2.3.1.	Mean Platelet Volume (MPV)	32
I.3.2.3.2.	Platelet Distribution Width (PDW)	33
I.3.2.4.	Serum	34
I.3.3.	Complete Blood Count	34
	CHAPTER II	
	MATERIALS AND METHODS	36
II.1.	Collection of Plant material	36
II.2.	Preparation of acetone extract of stem bark of Acacia	37
	Sieberiana (AESBAS) for phytochemical	
	analysis and oral administration	
II.3.	Method	39
II.3.1.	Instrument/ Equipment	39
II.4.	Qualitative phytochemical analysis	40
II.4.1.	Phytochemical screening (screening test)	40
II.4.1.1.	Test for tannins	40
II.4.1.2.	Test for flavonoids	41
II.4.1.3.	Test for steroids and terpenes	41
II.4.1.4.	Test for saponins	42
II.4.1.5.	Test for cardiac glycosides	42
II.4.1.6.	Test for alkaloids	43
II.4.1.7.	Test for steroidal ring	43
II.4.2.	Principle and application of GC-MS-TMS in	44
	Phytochemical analysis	
II.4.2.1.	Derivatization Analysis	50
II.4.2.1.1.	Silylation	50
II.4.2.2.	Derivatization of extract (AESBAS)	52
II.4.2.3.	GC-MS Programme	52
II.4.2.4.	Identification of components of extract (AESBAS)	53
II.5.	Experimental protocol and description of the test	53
	method on albino rats	
II.5.1.	Dosage calculation and preparation of stock solution of	55
	crude plant extract for experimental animals	
	(Oral administration of doses)	
II.5.1.1.	Dosage calculation	56
II.5.2.	Gross necropsy	62
II.5.3.	Statistical analysis (data analysis)	62

	CHAPTER III	
	RESULTS AND DISCUSSION	63
III.1.	Phytochemical studies analysis of AESBAS (part I)	63
III.1.1.	Phytochemical screening (screening test of AESBAS)	64
III.1.2.	Separation and identification of AESBAS by	65
	GC-MS-TMS analysis	
III.1.2.1.	Confirmation for the presence of tannins in AESBAS	70
III.1.2.2.	Confirmation for the presence of flavonoids in AESBAS	72
III.1.2.3.	Confirmation for the presence of terpenoids in AESBAS	75
III.1.2.4.	Confirmation for the presence of saponins in AESBAS	76
III.1.2.5.	Confirmation for the presence of cardiac glycosides in AESBAS	79
III.1.2.6.	The presence of linoleic and Oleic acid in AESBAS	81
III.1.2.7.	The presence of D-Pinitol in AESBAS	82
III.1.2.8.	The presence of Thiophene derivatives	83
III.1.2.9.	The presence of Lactic acid di-TMS	84
III.1.2.10.	The presence of alkaloids not identified by screening test	85
III.1.2.10.1	. The presence of Dion colactone A	87
III.1.2.11.	The presence of N-(trimethylsilyl)furan-	88
	carboxaldimine -2	
III.1.2.12.	The presence of Sclerodin	89
III.2.	Effect of oral administration of AESBAS	93
	on albino rats (part II)	
III.2.1.	Study change in weight during experimental study	93
III.2.2.	Study of some haematological parameters	94
	on albino rats	
III.2.2.1.	White Blood cells (WBCs)	96
III.2.2.1.1.	Granulocytes (Gran %)	98
	Lymphocyte (Lymph %)	100
III.2.2.1.3.	Monocyte (Mon %)	102
III.2.2.2.		104
III.2.2.2.1.	Hemoglobin (Hb)	106
	Haematocrit (HCT)	108
III.2.2.2.3.	Mean Cell Volume (MCV)	110
III.2.2.2.4.	Mean Cell Hemoglobin (MCH)	112
III.2.2.2.5.	Mean Corpuscular Hemoglobin Concentration (MCHC)	114
III.2.2.2.6.	Red Blood Cell Distribution Width (RDW)	116
II.2.2.3.	Platelet (PLT)	118
III.2.2. 3.1.	. Mean platelet volume (MPV)	120
III.2.2.3.2.	Platelet Distribution Width (PDW)	122

Conclusion	125
References	129
Summary	I
Arabic Summary	i

List of figures

Figure	Description	Page
Figure 1	Acacia Sieberiana Tree	3
Figure 2	Map of the world showing global distribution	4
	of the genus acacia	
Figure 3	Stem bark of Acacia Sieberiana	6
Figure 4	Egyptian goddess Isis	7
Figure 5	Medicinal uses of flavonoids	8
Figure 6	pathway of release of HCN by cyanogenic plants	10
Figure 7	oral administration of albino rats	13
Figure 8	Scanning EM View: These cells have been electronically	24
	colored to show up in this photo from a scanning electron	
	microscope (EM). The red cells are shown in red, the white	
	cells in yellow and the platelets in green	
Figure 9	Types of normal and anemic amount of red blood cells	27
Figure 10	serum-and-plasma	29
Figure 11	The dried fresh samples of stem bark of Acacia Sieberiana	36
Figure 12	The Acacia Sieberiana powder after the dried bark was pulverized	37
Figure 13	The dried acetone extract of stem bark of	38
	Acacia Sieberiana (AESBAS)	
Figure 14	Auto Hematology Analyzer (BC-2800)	39
Figure 15	Gas Chromatography-Mass Spectrometry (GC-MS)	40
Figure 16	Schematic of GC-MS	44
Figure 17	Schematic of GC part	46
Figure 18	Schematic of MS part	48
Figure 19	Chemical structure of N, O-Bis(trimethylsilyl)	51
	trifluoroacetamide (BSTFA)	
Figure 20	Silylation reaction using N, O-bis(tri methyl-silyl)	51
-	trifluoro- acetamide	
Figure 21	Gross necropsy of albino rats after 28 days	62
Figure 22	Main Chromatogram of GC-MS-TMS analysis of AESBAS	68
	These mass spectra can be identified from the data library	

Figure 23	GC-MS-TMS Chromatogram of Benzoic acid, 3, 4, 5-tris (trimethylsilyloxy)-, trimethylsilyl ester (Gallic-Acid-TMS)	71
Figure 24	GC-MS-TMS Chromatogram of Glucopyranose,1,2,3,4,6-pentakis-o-(trimethylsilyl)	72
Figure 25	GC-MS-TMS Chromatogram of Catechine, penta-TMS-ether (2RCis) (subclass of flavan-3-ols)	74
Figure 26	Chemical structure of catechine	74
Figure 27	Chemical structure of Farnesol	75
Figure 28	GC-MS-TMS Chromatogram of silan, tri methyl [(3, 7, 11-(trimethyl-2, 6, 10- dodecatrienyl) oxy])Farnesol-TMS	76
Figure 29	Chemical structure of Saponins	77
Figure 30	GC-MS-TMS Chromatogram of 5a'-androstan-17-one, 3a', 11a'-bis (trimethylsiloxy)	78
Figure 31	GC-MS-TMS Chromatogram of Sucrose-octa TMS	78
Figure 32	Chemical structure of cardiac glycoside	80
Figure 33	GC-MS-TMS Chromatogram of D-(-)-Fructofuranose, pentakis(trimethylsilyl) ether(isomer2)	80
Figure 34	GC-MS-TMS Chromatogram of Oleic acid Trimethyl ester	81
Figure 35	GC-MS-TMS Chromatogram of Linoleic acid	82
	Trimethylsilyl ester	
Figure 36	GC-MS-TMS Chromatogram of D-pinitol-TMS	83
Figure 37	GC-MS-TMS Chromatogram of 2-Ethyl-3- methylnaphtho[2,3-b] Thiophene-4,9-dione	84
Figure 38	Chemical structure of 2-Hydroxypropanoic acid (Lactic acid)	85
Figure 39	GC-MS-TMS Chromatogram of Propanoic acid diTMS (Lactic acid di-TMS)	85
Figure 40	Chemical structure of Isoquinoline	86
Figure 41	GC-MS-TMS Chromatogram of 4-[1'-(N-methyl	86
	amino)ethyl]-isoquinoline (isoquinoline derivatives)	
Figure 42	GC-MS-TMS Chromatogram of Dion colactone A (naphthylisoquinoline lkaloids)	87
Figure 43	GC-MS-TMS Chromatogram of N-(trimethylsilyl)furan-2-carboxaldimine	88
Figure 44	GC-MS-TMS Chromatogram of Sclerodin	89
Figure 45	Effect of AESBAS on Mean weights of the experimental groups	94
Figure 46	Effect of AESBAS on the WBC level of albino rats (GR300:group 300 mg/kg, GR600:group600mg/kg, GR1200:group1200mg/kg)	97
Figure 47	Effect of AESBAS on the Gran % level of albino rats (GR300:group 300 mg/kg, GR600:group600mg/kg, GR1200:group1200mg/kg)	99

Figure 48	Effect of AESBAS on the Lymph % level of albino rats	101
	(GR300: group 300 mg/kg, GR600:group600mg/kg,	
	GR1200:group1200mg/kg)	
Figure 49	Effect of AESBAS on the Mon % level of albino rats	103
	(GR300: group 300 mg/kg, GR600:group600mg/kg,	
	GR1200:group1200mg/kg)	
Figure 50	Effect of AESBAS on the RBCs level of albino rats	105
	(GR300:group 300 mg/kg, GR600:group600mg/kg,	
	GR1200:group1200mg/kg)	
Figure 51	Effect of AESBAS on the Hb level of albino rats	107
	(GR300: group 300 mg/kg, GR600:group600mg/kg,	
	GR1200:group1200mg/kg)	
Figure 52	Effect of AESBAS the HCT level of albino rats	109
	(GR300: group 300 mg/kg, GR600:group600mg/kg,	
	GR1200:group1200mg/kg)	
Figure 53	Effect of AESBAS on the MCV level of albino rats	111
	(GR300: group 300 mg/kg, GR600:group600mg/kg,	
	GR1200:group1200mg/kg)	
Figure 54	Effect of AESBAS on the MCH level of albino rats	113
	(GR300: group 300 mg/kg, GR600:group600mg/kg,	
	GR1200:group1200mg/kg)	
Figure 55	Effect of AESBAS on the MCHC level of albino rats	115
	(GR300: group 300 mg/kg, GR600:group600mg/kg,	
	GR1200:group1200mg/kg)	
Figure 56	Effect of AESBAS on the RDW level of albino rats	117
	(GR300: group 300 mg/kg, GR600:group600mg/kg,	
	GR1200:group1200mg/kg)	
Figure 57	Effect of AESBAS on the PLT level of albino rats	119
	(GR300: group300 mg/kg, GR600:group600mg/kg,	
	GR1200:group1200mg/kg)	
Figure 58	Effect of AESBAS on the MPV level of albino rats	121
	(GR300: group 300 mg/kg, GR600:group600mg/kg,	
	GR1200:group1200mg/kg)	
Figure 59	Effect of AESBAS on the PDW level of albino rats	123
	(GR300: group 300 mg/kg, GR600:group600mg/kg,	
	GR1200:group1200mg/kg)	

List of tables

Table	Description	Page
Table 1	OECD'S guideline on volume selection	56
Table 2	Stock solutions from three selected Dosage of a crude plant extract	61
Table 3	Screening Test of AESBAS	64
Table 4	Separation and identification of AESBAS by	67
	GC-MS-TMS analysis	
Table 5	Biological activities of some bioactive	69
	compounds of AESBAS	0.2
Table 6	Data mean weights of the experimental groups	93
Table 7	Effect of oral administration of AESBAS on some	95
Table 0	Haematological parameters in albino rats Macan value, SD and SEM of WDC for Control group Zero modica	96
Table 8	Mean value, SD and SEM of WBC for Control group Zero mg/kg, group 300 mg/kg, group600mg/kg and group1200mg/kg	90
Table 9	Mean value, SD and SEM of Gran % for Control group Zero mg/kg,	98
1 abic 3	group 300 mg/kg, group600mg/kg and group1200mg/kg	90
Table10	Mean value, SD and SEM of Lymph % for Control group Zero mg/kg,	100
TableTo	group 300 mg/kg, group600mg/kg and group1200mg/kg	100
Table 11	Mean value, SD and SEM of Mon % for Control group Zero mg/kg,	102
14010 11	group 300 mg/kg, group600mg/kg and group1200mg/kg	
Table 12	Mean value, SD and SEM of RBCs for Control group Zero mg/kg,	104
	group 300 mg/kg, group600mg/kg and group1200mg/kg	
Table 13	Mean value, SD and SEM of Hb for Control group Zero mg/kg,	106
	group 300 mg/kg, group600mg/kg and group1200mg/kg	
Table 14	Mean value, SD and SEM of HCT for Control group Zero mg/kg,	108
	group 300 mg/kg, group600mg/kg and group1200mg/kg	
Table 15	Mean value, SD and SEM of MCV for Control group Zero mg/kg,	110
	group 300 mg/kg, group600mg/kg and group1200mg/kg	
Table 16	Mean value, SD and SEM of MCH for Control group Zero mg/kg,	112
	group 300 mg/kg, group600mg/kg and group1200mg/kg	
Table 17	Mean value, SD and SEM of MCHC for Control group Zero mg/kg,	114
	group 300 mg/kg, group600mg/kg and group1200mg/kg	111
Table 18	Mean value, SD and SEM of RDW for Control group Zero mg/kg,	116
	group 300 mg/kg, group600mg/kg and group1200mg/kg	

Table 19	Mean value, SD and SEM of PLT for Control group Zero mg/kg,	118
	group 300 mg/kg, group600mg/kg and group1200mg/kg	
Table 20	Mean value, SD and SEM of MPV for Control group Zero mg/kg,	120
	group 300 mg/kg, group600mg/kg and group1200mg/kg	
Table 21	Mean value, SD and SEM of PDW for Control group Zero mg/kg,	122
	group 300 mg/kg, group600mg/kg and group1200mg/kg	

ABBRIVIATION

LIST OF SYMBOLS DESCRIPTION

AESBAS Acetone extract of stem bark of Acacia Sieberiana

ANOVA Analysis of variance

BSTFA N, O-Bis (trimethylsilyl) trifluoroacetamide

CBC A complete blood count

CLA conjugated linoleic acids

g gram

GC Gas Chromatography

GC- MS Gas Chromatography-Mass Spectrometry

Gran Granule (cell biology)

Hb Hemoglobin

kg kilogram

LD50 Lethal Dose, 50%" or median lethal dose

Lymph Lymphocyte

MCH Mean Cell Hemoglobin

MCHC Mean Corpuscular Hemoglobin Concentration

MCV Mean Cell Volume

mg milligram

ml millilitre

Mon Monocyte

MPV Mean Platelet Volume

MS mass spectrometry

NIST National Institute Standard and Technology library data

OECD organization of economic corporation and development's

PCV Packed Cell Volume (Hematocrit)

PDW Platelet Distribution Width

PLT Platelets

P-values The probability of obtaining a result the hypothesis under

consideration is true

PVC Packed Cell Volume

RBC Red Blood Cells

RDW Red Blood Cell Distribution Width

RT Retention Times

SD The standard deviation

SEM Standard error of mean

TMS Tri-methyl silyl group

WBC White Blood Cells

WHO The World Health Organization