NOS3 Genetic variants and Inflammation in Type 2 Diabetes: A Nutrigenetic Pilot Study

Thesis

Submitted For Partial Fulfillment of Master Degree In Clinical and Chemical Pathology

Bv

Amr Mohamed Kamal M. El-Bukhari
MB BCh, Ain Shams University

Supervised by

Professor / Randa Reda Mabrouk

Professor of clinical and Chemical Pathology Faculty of Medicine - Ain Shams University

Doctor / Dina Elsayed Elshennawy

Assistant professor of clinical and Chemical Pathology

Faculty of Medicine - Ain Shams University

Doctor / Nesrine Aly Mohamed

Lecturer of clinical and Chemical Pathology Faculty of Medicine - Ain Shams University

> Faculty of Medicine Ain Shams University 2016

Acknowledgments

I would like to express my deepest thanks, gratitude, and respect for **Prof. Dr. Randa Reda Mabrouk**, Professor of Clinical Pathology, Ain Shams University, for her continuous help and support. I was very fortunate to work under her supervision; she introduced me to a completely new field, and was extremely patient as I took my first stumbling steps in this thesis.

My sincere thanks go to **Dr. Dina Elsayed Elshennawy**, Assistant Professor of Clinical Pathology, Ain Shams University, for her continuous advice and supervision. Her close supervision made everything that much easier and that much possible. I'm very grateful for her continuous encouragement and guidance.

I would also like to voice my gratitude for **Dr. Nesrine Aly Mohamed**, lecturer of Clinical Pathology, Ain Shams University, for her working so closely with me to make sure that everything goes as smoothly as possible. Her continuous help, encouragement, and attention to detail were a corner stone for this work to come to light.

I would like to thank **Dr Eman Ahmed Sultan**, of the National Nutrition Institute, for her great help with the nutrition part of this thesis. She was very patient and very helpful, and contributed in ways nobody else could.

Last but not least, thanks to **Ms Doaa Hamed El-Sabakhawy**, of the National Nutrition Institute, for her all her help with the nutrition part of the work.

Dedication

I would like to dedicate this work to my family; my wife, my parents, and my sisters. I thank them all for all continuous help, support, encouragement, and tolerance, without which none of this would have been in the least possible.

List of Contents

Subject	Page No.
List of Abbreviations	i
List of Tables	vi
List of Figures	viii
Introduction	1
Aim of the Work	4
Review of Literature	
Introduction to Nutritional Genomics	5
Gene-Nutrient Interaction	8
Nutritional Genomics Research in Diseases	13
Obesity, Type 2 Diabetes Mellitus, and Inflammation	19
Nitric Oxide Synthase 3 and Type 2 Diabetes Mellitus	29
Subjects and Methods	32
Results	49
Discussion	61
Conclusion	71
Recommendations	72
References	73
Arabic Summary	

List of Abbreviations

Abbreviation Full term

5-LO 5-lipoxygenase

AHA American Heart Association

AMPK Adenosine monophosphate-activated

protein kinase

ANGPTL2 angiopoietin-like protein 2

ANOVA Analysis of variance

APOE Apolipoprotein E

ATP III Adult Treatment Panel III

BMI body mass index

Bp base-pair

BRCA1 Breast cancer 1 gene

BRCA2 Breast cancer 2 gene

CCL2 CC-chemokine ligand 2

CDC Centers for Disease Control and

Prevention

CETP Cholesteryl ester transfer protein

CRP C-reactive protein

Ct cycle threshold

CVD cardiovascular disease

Abbreviation Full term

CXCL5 CXC-chemokine ligand 5

DHA Docosahexaenoic acid

DHFR dihydrofolate reductase

EDTA ethyl diamine tetra-acetic

EGIR European Group for the Study of Insulin

Resistance

ELISA Enzyme-Linked Immunosorbent Assay

eNOS endothelial nitric oxide Synthase

EPA eicosapentaenoic acid

FFO Food Frequency Questionnaire

FTO Fat mass and obesity-associated protein

gp130 Glycoprotein 130

GPR120 G protein-coupled receptor 120

GWAS genome wide association studies

HbA1c Glycated Hemoglobin

HDL high-density lipoprotein

HOMA-IR homeostasis model assessment of insulin

resistance

hsCRP high sensitivity C-Reactive Protein

IDF International Diabetes Federation

IFG impaired fasting glycemia

Abbreviation Full term

IGR impaired glucose tolerance

IL Interleukin

IL-6 Interleukin-6

IL-6r Interleukin-6 receptor

iNOS inducible Nitric oxide Synthase

IR insulin resistance

IRS1 Insulin receptor substrate 1

JAK Janus kinase

Kb kilo bases

MCP monocyte chemoattractant protein

MetS metabolic syndrome

MMTV mouse mammary tumor virus

mRNA messenger RNA

MTHFR methylenetetrahydrofolate reductase

NAMPT nicotinamide phosphoribosyltransferase

NCEP National Cholesterol Education Program

NF-κB nuclear factor kappa B

NHLBI National Heart Lung and Blood Institute

Nrf2 Nuclear factor-erythroid 2-related factor 2

nNOS neuronal Nitric oxide Synthase

Abbreviation Full term

NO Nitric Oxide

NOS Nitric Oxide Synthase

NOS1 Nitric oxide Synthase 1

NOS2 Nitric oxide Synthase 2

NOS3 Nitric oxide Synthase 3

NS Non-Significant

OR Odds ratio

PBS phosphate buffer saline

PCR Polymerase Chain Reaction

PMN polymorphonuclear neutrophil

PPARy Proliferator-activated receptor gamma

PUFAs polyunsaturated fatty acids

RBG random blood glucose

RBP4 retinol-binding protein 4

S Significant

SFRP5 secreted frizzled-related protein 5

sIL-6R soluble IL-6 receptor

SNP single nucleotide polymorphism

STAT signal transducer and activator of

transcription

Abbreviation Full term

THF Tetrahydrofolate

T1DM Type 1 Diabetes Mellitus

T2DM Type 2 Diabetes Mellitus

TAG Triacylglycerol

TCFL2 Transcription factor 7-like 2

TNF tumour necrosis factor

TNF-α tumor necrosis factor alpha

UGT UDP-glucuronosyltransferases

USA United States of America

VNTR variable number tandem repeat

WC waist circumference

WHO World Health Organization

WNT5a Wingless-type MMTV integration site

family, member 5a

X² Chi-Square test

List Of Tables

List of Tables

Table number	Description	Page number
Table (1)	Definitions of metabolic syndrome according to the NCEP ATP III, IDF, AHA, WHO, and EGIR criteria.	17
Table (2)	Sources and functions of key adipokines.	24
Table (3)	The PCR reaction mix (Total volume of 25 μ L)	41
Table (4)	Thermal cycler programming for Amplification and genotyping.	42
Table (5)	Comparison between the two groups as regards anthropometric measures	51
Table (6)	Comparison between the two groups as regards glycemic control indicators (HbA1c and random blood glucose)	52
Table (7)	Comparison between the two groups as regards IL-6.	52
Table (8)	Comparison between the two groups as regards dietary habits	53
Table (9)	Comparison between the two groups in genotype of NOS3 gene and allele frequency	54
Table (10)	Comparison between the two groups as regards allelic expression.	54
Table (11)	Comparison between the sample populations stratified according to BMI as regards allelic expression.	54

Table number	Description	Page number
Table (12)	Correlation between glycemic control indicators and anthropometric measures	56
Table (13)	Correlation between glycemic control and inflammatory markers	56
Table (14)	Correlation between anthropometric measures and inflammatory markers	57
Table (15)	Correlation between dietary habits and inflammatory markers	58
Table (16)	Correlation between genotypes of NOS3 gene and inflammatory markers	59
Table (17)	Correlation between levels of interleukin-6 and expression of the test alleles	59

List Of Figures

List of Figures

Figure number	Description	Page number
Figure (1)	Omega-3 fatty acids as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) promote alternatively activated macrophages.	10
Figure (2)	Effect of C677T polymorphism on Folate pathways	12
Figure (3)	Comparison between lean and obese adipose tissue in immune cells infiltration and adipokine secretion	23
Figure (4)	Possible role played by IL-6 in the shift from acute to chronic inflammation. Stage 1	27
Figure (5)	Organization of eNOS and location of the examined polymorphisms	30
Figure (6)	An example of an Amplification curve with baseline set correctly, beginning after the maximum deadline.	42
Figure (7)	Standard curve of human IL-6 ELISA Kit.	46
Figure (8)	Differences in anthropometric measures between case and control groups.	51
Figure (9)	Comparison between case and control groups as regards HbA1c and serum Interleukin-6.	52
Figure (10)	Upward trend in the correlation between serum IL-6 levels and HbA1c in the case group.	57
Figure (11)	Upward trend in the correlation between serum IL-6 levels and dietary fat intake in the case group.	58
Figure (12)	Correlation between serum levels of IL-6 and genetic expression of the G allele (in blue, no correlation), and the T risk allele (in red, upward trend).	60

INTRODUCTION

Nutrigenomics is a newly developed science domain which studies the relation between the different nutrients and the genes. The term refers to both the study of how the foods we consume affect our genes and how our genes can influence our body's response to what we eat. It has been proposed and then scientifically proved that the genes are flexible and that the genes products behave differently in the presence of certain nutrients. Recent scientific discoveries relating specific gene variants to dietary response can enable physicians to use nutrition to its fullest potential to address various health issues. personalized diets can optimize an individual's nutritional status and specifically focus on preventing diet-related diseases (Fenech et al., 2011).

One of these genes that showed genetic variations is Nitric Oxide Synthase 3 (NOS3) gene encoded on chromosome 7q35-36. It is responsible for the production of Nitric Oxide Synthase (NOS) enzyme that mediates the production of Nitric Oxide (NO) from L-arginine in the endothelial cells (*Liu et al.*, 2005). NO is an important endothelium-derived vascular relaxing factor (*Hibi et al.*, 1998).

The replacement of guanine by thymine at NOS3 nucleotide 894 results in a change of amino acid from glutamate to aspartate at codon 298 of the mature NOS3 protein. Two groups of investigators have shown that NOS3 with aspartate at position 298 is subject to selective proteolytic cleavage which is predicted to result in absence or reduction of NOS activity in

/" Introduction

homozygous carriers of the 894T allele (Persu et al., 2002). This results in defects in endothelial cell function and NO production being described for subjects with atherosclerosis, hypertension, diabetes, as well as obesity. Obesity has previously been associated with diabetes risk in several studies, and obese reported to individuals have been have reduced bioavailability compared to controls whose weight is in the normal range (Bressler et al., 2013). In addition, adipose tissue is one of the main sources of inflammatory mediators, with Interleukin-6 (IL6) among them (Eder et al., 2009). It has also been demonstrated that IL6 inhibits NOS activation (Hung et al., *2010*).

The relation of NOS3 genetic variants and metabolic diseases has been studied. For example, in one study, the relationship between the G894T polymorphism and diabetes risk was modified by BMI with evidence for interaction between obesity and the minor genotype. In subsequent analyses stratified by levels of BMI, homozygosity for the NOS3 894T allele in obese individuals was shown to be significantly associated with an increased risk for diabetes when compared to the most common genotype, while no variation in susceptibility with genotype was found for individuals whose BMI was less than 30 kg/m² (*Bressler et al., 2013*). In another study, both inflammatory markers and serum lipids was lower in wild type homozygotes compared to variant carriers. Accordingly, there was a dramatic difference in the rates of arterial stiffness between the two genetic variants (*Zineh et al., 2007*).

Introduction

Scientific researchers believe that through exploiting the recent genomic information and better understanding of nutrient-gene interactions, better health outcomes can be achieved if nutritional requirements are customized for each individual taking into consideration the inherited genetic characteristics depending on life stage, dietary preferences and health status (*Fenech et al.*, 2011).