

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

نقسم بللله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأفلام قد اعدت دون آية تغيرات

يجب أن

تحفظ هذه الأفلام بعيداً عن الغبار

في درجة حرارة من 15-20 مئوية ورطوبة نسبية من 20-40 %

To be kept away from dust in dry cool place of 15 – 25c and relative humidity 20-40 %

ثبكة المعلومات الجامعية

Information Netw. " Shams Children Shams of the Shame of the S شبكة المعلومات الجامعية @ ASUNET بالرسالة صفحات لم ترد بالأص

THERMO - ECONOMIC ANALYSIS OF GAS TURBINE - ABSORPTION REFRIGERATION COGENERATION SYSTEMS

by

Maged Nassif Morcos Raafat

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE

in

MECHANICAL POWER ENGINEERING

Under the Supervision of

Prof. Dr. AHMED El ASFOURI Mechanical Power Engineering Dept. Faculty of Engineering Cairo University Prof. Dr. ABD-ALLAH HANAFY
Mechanical Power Engineering Dept.
Faculty of Engineering
Cairo University

Dr. MOHSEN ENAYET
Mechanical Power Engineering Dept.
Faculty of Engineering
Cairo University

BITIN

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT December 1998 ely

3-4029-15

THERMO - ECONOMIC ANALYSIS OF GAS TURBINE - ABSORPTION REFRIGERATION COGENERATION SYSTEMS

by

Maged Nassif Morcos Raafat

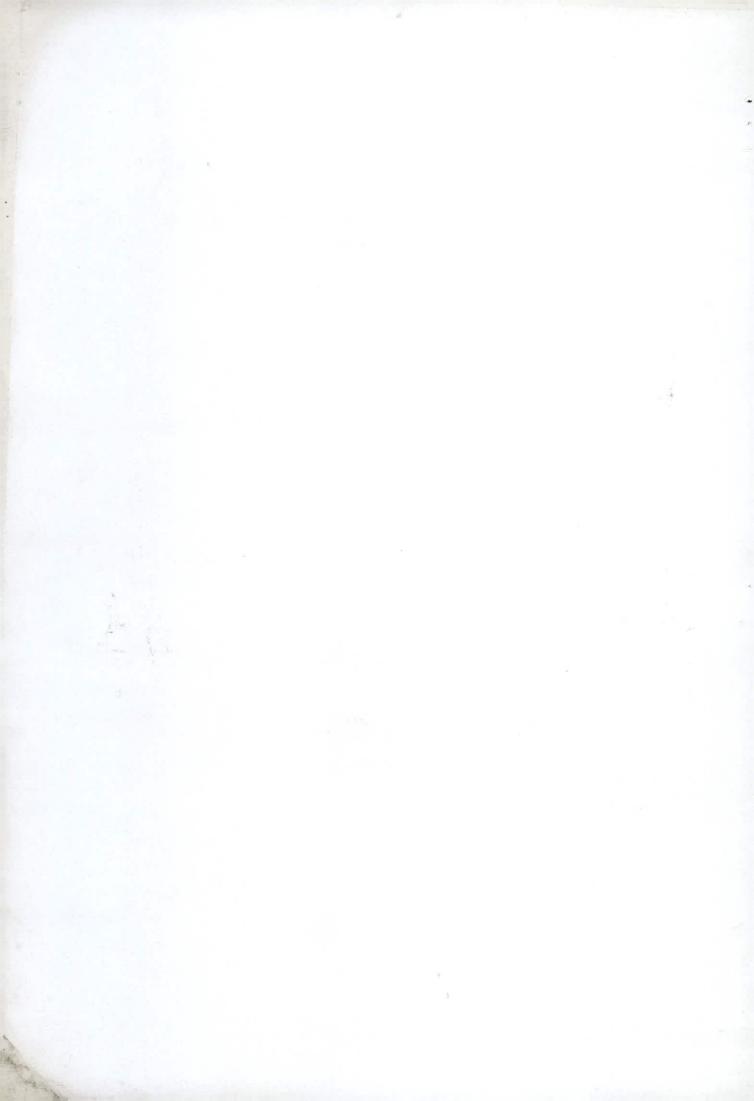
A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

in

MECHANICAL POWER ENGINEERING

Approved by the Examining committee:	
Prof. Dr. Ahmed El Asfouri	Main Supervisor & flif
Prof. Dr. Abd-Allah Hanafy	Hand
Prof. Dr. Mounir Helal	To Weld Cohour
Prof. Dr. Samir Abd El Ghan	ie S.M. Abdef-Gham
7/0/18	
FJ 2//5	

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
December 1998



Dedicated to,

Prof. Dr. Nassif M. Raafat

and to

my Wife

List of tables

		Page
Table II.1	Fuel analysis	23
Table II.2	Typical gas turbine unit analysis results for $T_3 = 1273 \text{ K}$ and	
	a net power output of 1 MW	51
Table II.3	Optimum nominal pressure ratios for gas turbine unit	52
Table II.4	Pinch point temperature difference corresponding to	
	different operating conditions	60
Table II.5	Typical waste heat boiler analysis results for WHB pressure	
	= 7 bar, gas turbine unit net power output = 1 MW	61
Table II.6	Applicable values for the design parameters of water lithium	
	bromide absorption systems	93
Table III.1	System's components prices	115
Table A.I.1	Calculation of theoretical air to fuel ratio	138
Table A.IV.1	Computer program input data	171
Table A.IV.2	Computer program part I output data	172
Table A.IV.3	Computer program part II output data	172
Table A.IV.4	Computer program part III output data	173

List of figures

			Page
Fig. I.1	Basic types of cogeneration systems		6
Fig. I.2	The cogeneration system layout	45	8
Fig. II.1	The Brayton cycle		18
Fig. II.2	Simple gas turbine cycle layout		20
Fig. II.3	Simple gas turbine cycle pressure losses		20
Fig. II.4	Egypt energy consumption pattern 1993		22
Fig. II.5	Natural gas consumption pattern in Egyp	ot 1993	22
Fig. II.6	Variation of gas turbine unit specific wo	rk output with	
	nominal pressure ratio		28
Fig. II.7	Variation of exhaust gases mass flow rat	e with gas turbine unit	
	power output for $T_3 = 1073 K$		29
Fig. II.8	Variation of exhaust gases mass flow rat	e with gas turbine unit	
	power output for $T_3 = 1123 K$		30
Fig. II.9	Variation of exhaust gases mass flow rat	e with gas turbine unit	
	power output for $T_3 = 1173 K$		31
Fig. II.10	Variation of exhaust gases mass flow rat	e with gas turbine unit	
	power output for $T_3 = 1223 K$		32
Fig. II.11	Variation of exhaust gases mass flow rat	e with gas turbine unit	
	power output for $T_3 = 1273 K$		33
Fig. II.12	Variation of exhaust gases mass flow rat	e with gas turbine unit	
	power output for $T_3 = 1323 K$		34
Fig. II.13	Variation of exhaust gases mass flow rat	e with gas turbine unit	
	power output for $T_3 = 1373 K$		35
Fig. II.14	Variation of exhaust gases mass flow rat	e with gas turbine unit	
	power output for $T_3 = 1423 K$		36
Fig. II.15	Variation of exhaust gases mass flow rat	e with gas turbine unit	
	power output for $T_3 = 1473 K$		37
Fig. II.16	Variation of exhaust gases mass flow rat	e with gas turbine unit	
	power output for $PR_N = 5$		38

		Page
Fig. II.17	Variation of exhaust gases mass flow rate with gas turbine unit	
	power output for $PR_N = 10$	39
Fig. II.18	Variation of exhaust gases mass flow rate with gas turbine unit	
	power output for $PR_N = 15$	40
Fig. II.19	Variation of exhaust gases mass flow rate with gas turbine unit	
	power output for $PR_N = 20$	41
Fig. II.20	Variation of exhaust gases mass flow rate with gas turbine unit	
	power output for $PR_N = 25$	42
Fig. II.21	Variation of exhaust gases mass flow rate with gas turbine unit	
	power output for $PR_N = 30$	43
Fig. II.22	Variation of exhaust gases mass flow rate with gas turbine unit	
_	power output for $PR_N = 35$	44
Fig. II.23	Variation of exhaust gases mass flow rate with nominal	
-	pressure ratio for a power output of 1 MW	45
Fig. II.24	Variation of exhaust gases outlet temperature with nominal	
	pressure ratio	46
Fig. II.25	Variation of exhaust gases outlet temperature with maximum	
	cycle temperature	47
Fig. II.26	Variation of gas turbine unit thermal efficiency with nominal	
	pressure ratio	48
Fig. II.27	Variation of exhaust gases enthalpy rate with nominal pressure	
	ratio for a gas turbine unit power output of 1 MW	49
Fig. II.28	Variation of exhaust gases dew point temperature with	
	nominal pressure ratio	50
Fig. II.29	Typical gas and steam temperatures, unfired steam generator	54
Fig. II.30	Typical unfired steam generator	54
Fig. II.31	Waste heat boiler analysis input data	56
Fig. II.32	Variation of steam mass flow rate with gas turbine unit	
	nominal pressure ratio, for $T_3 = 1073 K$, net power output = 1	
	MW and for different values of WHB pressure	62

		Page
Fig. II.33	Variation of steam mass flow rate with gas turbine unit	
	nominal pressure ratio, for $T_3 = 1173 K$, net power output = 1	
	MW and for different values of WHB pressure	63
Fig. II.34	Variation of steam mass flow rate with gas turbine unit	
	nominal pressure ratio, for $T_3 = 1273 K$, net power output = 1	
	MW and for different values of WHB pressure	64
Fig. II.35	Variation of steam mass flow rate with gas turbine unit	
	nominal pressure ratio, for $T_3 = 1373 \text{ K}$, net power output = 1	
	MW and for different values of WHB pressure	65
Fig. II.36	Variation of steam mass flow rate with gas turbine unit	
	nominal pressure ratio, for $T_3 = 1473 \text{ K}$, net power output = 1	
	MW and for different values of WHB pressure	66
Fig. II.37	Variation of pinch point temperature difference with gas	
	turbine unit nominal pressure ratio, for WHB pressure = 5 bar	
	and for different values of T_3	67
Fig. II.38	Variation of pinch point temperature difference with gas	
	turbine unit nominal pressure ratio, for WHB pressure = 7 bar	
	and for different values of T_3	68
Fig. II.39	Variation of pinch point temperature difference with gas	
	turbine unit nominal pressure ratio, for WHB pressure = 9 bar	
	and for different values of T_3	69
Fig. II.40	Variation of pinch point temperature difference with gas	
	turbine unit nominal pressure ratio, for $T_3 = 1073 K$, and for	
	different values of WHB pressure	70
Fig. II.41	Variation of pinch point temperature difference with gas	
	turbine unit nominal pressure ratio, for $T_3 = 1173 K$, and for	
	different values of WHB pressure	71
Fig. II.42	Variation of pinch point temperature difference with gas	
	turbine unit nominal pressure ratio, for $T_3 = 1273 K$, and for	
	different values of WHB pressure	72