Anesthetic management for carotid endarterectomy

In patients with unstable angina

An essay submitted for partial fulfillment of the master degree in Anesthesiology

 $\mathcal{B}\gamma$

Ahmed Samir Mohamed Mohamed M.B.,B.Ch.

Supervisors

Prof. Dr. Mahmoud Sherif Moustafa

Prof. of anesthesia & Intensive care
Faculty of Medicine- Ain Shams University

Prof. Dr. Amr Esam El Din Abd Al Hammed

Prof. of anesthesia & Intensive care
Faculty of Medicine- Ain Shams University

Dr. Waleed Abd Al Mageed Al Taher

Lecturer of anesthesia & Intensive care Faculty of Medicine- Ain Shams University

المعالجة التخديرية لإستئصال بطانة الشريان السباتى المتصلبة فى مرضى الذبحة الصدرية

رسالة مقدم من الطبيب/ أحمد سمير محمد

توطئة للحصول على درجة الماجستير في التخدير

تحت إشراف

الأستاذ الدكتور/محمود شريف مصطفى

أستاذ التخدير والرعاية المركزة كلية الطب- جامعة عين شمس

الأستاذ الدكتور/ عمرو عصام الدين عبد الحميد

أستاذ التخدير والرعاية المركزة كلية الطب- جامعة عين شمس

الدكتور/ وليد عبد المجيد الطاهر

مدرس التخدير والرعاية المركزة كلية الطب- جامعة عين شمس

Contents

	Page
LIST OF CONTENTS	O
LIST OF ABBREVIATIONS	
LIST OF FIGURES	
LIST OF TABLES	
INTRODUCTION	1
CHAPTER 1: ANATOMICAL AND	
PHYSIOLOGICAL CONSIDERATIONS	3
Anatomy of cerebral blood flow	3
Normal rate of cerebral blood flow	4
Critical CBF thresholds	5
Regulation of Cerebral Blood Flow	6
A. Metabolic Control of Flow	6
1. Effect of carbon dioxide concentration	6
2. Effect of oxygen concentration	8
3. Effect of brain activity	9
B. Effect of blood pressure	10
C. Neural control	11
Cerebral Microcirculation	12
Effect of anesthetic agents on CBF	14
Cerebrospinal fluid system	15
Brain metabolism	15
A. Metabolic rate of neurons	15
B. lack of significant anaerobic metabolism.	16
C. Glucose requirement	17
Physiologic anatomy of coronary blood supply	18
Normal Coronary Blood Flow	19
11022222 0020222 2100012000000000000000	
CHAPTER 2: PREOPERATIVE ASSESSMENT	
AND PREPARATION	20
Prevalence of carotid artery disease	20
The course of carotid artery disease	20
Indications for surgical intervention	21
Surgical approaches for carotid revascularization	22

Management of combined blood flows	22
Measurement of cerebral blood flow	23
A. The Kety-Schmidt method	24
B. modifications of Kety-Schmidt method	24
C. Non invasive techniques	25
Effect of CPB on CBF	26
Preoperative Evaluation	27
A. Cardiac risk according to type of surgery	28
B. Cardiac risk according to patient condition	29
Laboratory data	34
Perioperative Medications to the reduce incidence	
of myocardial ischemia	35
Aadrenergic antagonists	35
B. 2-adrenergic agonist	36
C. Nitrovasodilators	37
D. Calcium channel blockers	38
Premedication	38
CHAPTER 3: INTRAOPERATIVE	
MANAGEMENT	40
Intraoperative predictors for perioperative cardiac	
morbidity	40
Monitoring	40
A. Routine monitors	40
B. Assessment of adequacy of cerebral	
perfusion under regional anesthesia	41
C. Assessment of adequacy of cerebral	
perfusion under general anesthesia	41
1. Electroencehpalogram	42
2. Somatosensory evoked potentials	44
3. Transcranial Doppler	45
4. Stump pressure	47
	48
Choice of anesthesia	
Choice of anesthesia	48
Choice of anesthesia	48 48
Choice of anesthesia	48 48
Choice of anesthesia	48 48

3. Combined carotid endarterectomy and off-pump coronary artery bypass surgery under thoracic epidural anesthesia without endotracheal general	52
anesthesia	52
B. Techniques	54
1. General anesthesia	54
2. Regional anesthesia (cervical plexus	
block)	56
. Indications	56
. Drugs	57
. Technique	58
V. Complications	62
Fluid management	64
Blood pressure management	64
CHAPTER 4: POSTOPERATIVE CARE	60
Postoperative complications. A. Hypertension B. Respiratory complications C. hypothermia Postoperative cardiac morbidity A. predictors B. Diagnosis of perioperative myocardial infarction. C. Management of perioperative myocardial infarction.	68 68 70 72 73 73 75
A. Hypertension B. Respiratory complications C. hypothermia Postoperative cardiac morbidity A. predictors B. Diagnosis of perioperative myocardial infarction. C. Management of perioperative myocardial	68 68 70 72 73 73

List of abbreviations

ACC American College of Cardiology

AHA American heart Association

AMI Acute myocardial infarction

ASA Acetyl salicylic acid

BUN Blood urea nitrogen

CABG Coronary artery bypass grafting

CAS Carotid artery stenting

CBF Cerebral blood flow

CEA Carotid endarterectomy

CHF Congestive heart failure

CK Creatine kinase

COPD Chronic obstructive pulmonary disease

CVA Cerebral vascular accident

ECG Electrocardiogram

EEG Electroencehpalogram

Hct Hematocrit

HTN Hypertension

ICU Intensive care unit

LBBB Left bundle branch block

LV Left ventricle

NSTEMI Non-ST-elevation myocardial infarction

Elist of abbreviations

NTG Nitroglycerin

NYHA New York heart association

Paco₂ Partial pressure of arterial co₂

PCA Percutaneous coronary angiography

PCM Perioperative cardiac morbidity

PCWP Pulmonary capillary wedge pressure

Pco₂ Partial pressure of co₂

PMI Perioperative myocardial infarction

PH Potential of hydrogen

Po₂ Partial pressure of o₂

rCBF Regional cerebral blood flow

rSO₂ Regional cerebral oxygen flow

STEMI ST-elevation myocardial infarction

SSEPs Somatosensory evoked potentials

TCD Transcranial Doppler

TIA Transient ischemic attack

List of figures

Figure		Page
Figure 1:	Circle of Willis	4
Figure 2:	Relationship between arterial Pco ₂ and cerebral blood flow	7
Figure 3:	Increase in blood flow to occipital regions of a cat's brain when light is shined into its eyes	10
Figure 4:	Relation of mean arterial pressure to cerebral blood flow in normotensive, hypotensive and hypertensive people	11
Figure 5:	Effect of intravenous anesthetic agents on cerebral blood flow and cerebral metabolic rate of oxygen	14
Figure 6:	Superficial landmarks for cervical plexus block	59
Figure 7:	Anatomy of deep cervical plexus block	60
Figure 8:	Superficial cervical plexus block	62
Figure 9:	Anesthetic management of carotid endarterectomy	67

List of Tables

Table		Page
Table 1:	Effect of anesthetic agents on cerebral blood flow	51

Acknowledgement

First, thanks are all due to **ALLAH** for blessing this work until it has reached its end, as a part of his generous help throughout our life.

I would like to express my deep gratitude and appreciation to **Professor Dr. Mahmoud Sherif Moustafa**, who has with such good grace expended his time and encyclopedic knowledge to supervise and guide me throughout this work.

I am greatly indebted to Professor Dr. Amr Essam El Din Abd Al Hammed for the generous support and invaluable help. It's great honor to work under his supervision.

I would like to direct my special thanks to **Dr. Waleed Abd Al Mageed Al Taher**, for his advise and continuous support and guidance step by step offered to me till the end this work.

Ahmed Samir

To my parents
My Brothers
And
My little

Introduction

The anesthetic and surgical management of patients undergoing neurovascular surgical procedures has undergone substantial changes in recent years, with perhaps the most changes occurring with respect to carotid endarterectomy (*Larson and Youngberg*, 2000).

Because it is the most commonly performed vascular procedure, the trend has been toward simplifying the perioperative course, which includes greater use of indirect methods for evaluating adequacy of cerebral function, greater use of regional anesthesia, less use and reliance on monitors for evaluation adequacy of cerebral function, less use of surgical shunts, less use of ICU facilities, and earlier discharge from hospital (*Larson Youngberg*, 2000).

These changes have decreased hospital costs for this operation without any documented increase on morbidity or mortality (*Larson and Youngberg*, 2000).

Anesthesiologists and surgeons continue to search for ways to protect the brain from ischemia during temporary interruption of circulation. (*Larson and Youngberg*, 2000)

It is well to recognize that cerebral vascular disease may be a manifestation of systemic vascular disease, including coronary artery or renovascular disease, and perioperative

outcome may benefit from careful preoperative evaluation and therapy for these systems (Larson and Youngberg, 2000).

The association between carotid artery disease and coronary artery disease presents a number of complex issues. If the patient has combined disease, which entity should be addressed first? The literature does not provide a clear answer to this question (Larson and Youngberg, 2000).

Anatomical and Physiological Considerations

Chapter 1

Anatomical and Physiological Considerations

Anatomy of cerebral blood flow

The common carotid arteries originate in the thorax. The right common carotid artery originates at the bifurcation of the brachiocephalic trunk, and the left originates from the aortic arch. In the neck, the common carotid arteries travel within the carotid sheath. At the level of the thyroid cartilage each common carotid artery bifurcates into internal and external carotid arteries (*Hemmings and Hopkins*, 2006).

Branches of the external carotid artery include the superior thyroid, lingual, facial, ascending pharyngeal, and posterior auricular artery. (*Hemmings and Hopkins*, 2006)

The internal carotid artery passes through the neck without branching to enter the middle cranial fossa via the carotid canal of the temporal bone, adjacent to the sphenoid bone. It supplies the hypophysis cerebri, the orbit, and the major portion of the supratentorial origin of the brain (*Moore*, 2006).