Management of High Energy Proximal Tibial Fractures by Ilizarov External Fixator

A Thesis Submitted for the Fulfillment of M.D. Degree in Orthopedic Surgery

By

Khaled Mohammed Abd El-Mooty El Sisy

(M.Sc. Orthopedic Surgery)

Under supervision of

Prof. Dr. Hazem Abd El Azeem

Professor of Orthopedic Surgery

Faculty of Medicine - Cairo University

Prof. Dr. Ahmed Nabawy Morrah

Professor of Orthopedic Surgery

Faculty of Medicine - Cairo University

Prof. Dr. Mohamed Mahmoud Hegazy

Professor of Orthopedic Surgery

Faculty of Medicine - Cairo University

Faculty of Medicine

Cairo University

2016

رِسْمِ اللَّمِ الرَّدْمَانِ الرَّدِيمِ ''إِنْ أُرِيدُ إِلاَّ الإِطْلامَ مَا اسْتَطَعْتُ وَمَا تَوْفِيقِي إِلاَّ بِاللَّمِ عَلَيْمِ تَوَكَّلْتُ وَإِلَيْمِ أُنِيدِم.'' تَوْفِيقِي إِلاَّ بِاللَّمِ عَلَيْمِ تَوَكَّلْتُ وَإِلَيْمِ أُنِيدِم.''

حدق الله العظيم

(هود: ۸۸)

Acknowledgements

First and foremost, praise and thanks are given to Allah who provided me in his unlimited generosity with the medical knowledge, and by his abundant aid this work has been done.

It is a great honor to express my sincere gratitude and deep appreciation to Prof. Dr. <u>Hazem Abd El Azeem</u> and Prof. Dr. <u>Ahmed Nabawy Morrah</u>, Professors of Orthopedic Surgery, Faculty of Medicine, Cairo University who gave me the honor of working under their remarkable supervision and fruitful guidance that makes me really fortunate and who were kind to offer me much of their valuable time.

I would also like to express my sincere gratitude and deep appreciation to **Prof. Dr. Mohamed Mahmoud Mohamed Hegazy**, Professor of Orthopedic Surgery, Faculty of Medicine, Cairo University; who gave me the honor of working under his supervision, for his careful and great support in this thesis and valuable and precious experience, supervising the whole work, reading and criticizing the manuscript.

Finally I cannot fully express by any words my deep gratitude to my family, whom I owe a lot and dedicate this work, hoping it will help in improving the outcome of patients with high energy fractures of the proximal tibia.

Khaled Mohammed El Sisy

Contents

Title	Page
List of figures	I
List of tables	
List of abbreviations	VI
Abstract	VIII
Introduction	
Review of Literature:	
✓ Anatomy and biomechanics	4
✓ Mechanism of Injury	
✓ Evaluation	
✓ History &Physical examination	
✓ Imaging study	
✓ Classification	
✓ Classifications of tibial plateau fractures	
✓ Classifications of extraarticular fractures	
✓ Classifications of soft tissues injuries ✓ Treatment of proximal tibia fractures	
✓ Conservative treatment	
✓ Operative treatment	
✓ Ilizarov external fixator	
✓ Complications	81
Patients and Methods	88
Results	115
Cases Presentation	135
Discussion	147
Conclusion	159
Summary	161
References	164
Arabic Summary	9-6

List of Figures

Figure No.	Figure Title	Page
Fig 1	Anterior view of anatomy of right tibia and fibula.	4
Fig 2	Posterior view of anatomy of right tibia and fibula.	4
Fig 3	The right knee joint as seen from: A. The lateral aspect. B. The anterior aspect, with the joint flexed. C, D. the posterior aspect	7
Fig 4	Genicular anastomosis	8
Fig 5	Anatomical cuts for wires and half pins insertion	9
Fig 6	Cut 1 for wire and half pin insertion.	11
Fig 7	Cut 2 for wire and half pin insertion.	11
Fig 8	Cut 3 for wire and half pin insertion.	12
Fig 9	Cut 4 for wire and half pin insertion.	12
Fig 10	Cut 5 for wire and half pin insertion.	13
Fig 11	Cut 6 for wire and half pin insertion.	13
Fig 12	Mechanical axis of lower limb.	15
Fig 13	The normal lower limb alignment and joint orientation.	15
Fig 14	Motions of the knee.	16
Fig 15	Proximal tibia as defined by Lindvall.	19
Fig 16	Tibial plateau view.	26
Fig 17	Schatzker classification of tibial plateau fractures.	32
Fig 18	Honkonen and Jarvinen subtypes of bicondylar fractures: A: Laterally-tilted. B: Medially-tilted. C: Symmetric axial displacement	34
Fig 19	AO classification of proximal tibia fractures.	35
Fig 20	The AO classification of proximal extra-articular segment.	37
Fig 21	Three column concepts of the proximal tibia.	38
Fig 22	AO description of skin lesions (IC) in closed fractures.	45
Fig 23	AO description for skin lesion (IO) in open fractures.	45
Fig 24	AO classification of Muscle/tendon injury (MT).	46
Fig 25	AO classification of neurovascular injury (NV).	46
Fig 26	Temporary bridging external fixation.	53
Fig 27	Dual plating through medial and lateral incisions.	57
Fig 28	Single lateral locking plate for a bicondylar fracture.	58

I

Figure No.	Figure Title	Page
Fig 29	Less Invasive Stabilization System (LISS) for fractures of the proximal tibia.	59
Fig 30	Preoperative and 18-week postoperative radiographs illustrating lag screw fixation of the tibial tubercle fragment independent from the LISS construct.	60
Fig 31	Failure of fixation using LISS.	60
Fig 32	IM nail with 3 fixed-angle oblique locking screws.	62
Fig 33	A half pin bridging frame is placed at the time of injury to stabilize the extremity.	63
Fig 34	Four plans for reconstruction.	66
Fig 35	Distraction is the key of reduction.	68
Fig 36	Rotation, shortening, and displacement are corrected to align the fracture.	69
Fig 37	Type C fracture joint line should be reduced first.	69
Fig 38	(A) On larger fragments, the screw can be placed below the reference wire.(B) The screw is placed just below the joint surface in C2 fractures to avoid interference with the limited wire pathways.	69
Fig 39	The medial condyle is reduced using "joysticks" or placing elevators.	70
Fig 40	Radiological and clinical progression of case number(13)	70
Fig 41	Limited approach for lateral plateau elevation.	71
Fig 42	Horizontal reference wire adjustment for adjustment of the frame.	72
Fig 43	Fixation of the distal block.	73
Fig 44	A laminar spreader technique can be used to align the posterior cortex.	74
Fig 45	Draw wire technique.	75
Fig 46	Half pin is added to the fixator to increase stiffness and the fracture is compressed.	75
Fig 47	Femoral ring in relation to stable base.	77
Fig 48	Femoral ring in relation to plateau ring.	77
Fig 49	Distraction across the joint will elevate the plateau to its anatomic position. The joint surface will need to be reduced.	78
Fig 50	Elevated joint fixed with wires and screw and protected by the distracted femoral ring.	79
Fig 51	Compression to metaphyseal fracture.	79
Fig 52	Inspection of any open wound or ecchymosis.	95
Fig 53	Preassembled frame.	98
Fig 54	Position in abduction.	99
Fig 55	Positioning of patient and C-arm.	100
Fig 56	Reduction of the joint surface by minimal invasive approach.	101
Fig 57	Pointed bone clamp applied and checked by image intensifier.	102
Fig 58	Screws fixing the joint and extension percutaneously.	102

List of figures

Figure No.	Figure Title	Page
Fig 59	Wires applied and then tensioned for frame centralization.	104
Fig 60	Fixation of the tibial plateau.	105
Fig 61	Fixation is completed by adding wires, pins and rods.	106
Fig 62	Exercises of the knee full extension and full flexion.	111
Fig 63	Callus formation in the frame before removal.	111
Fig 64	Demography of skin condition in relation to final scoring.	128
Fig 65	Demography of skin classification in relation to final scoring.	129
Fig 66	Demography showing the relation between articular extension of the fracture and the final scoring.	131
Fig 67	Demography showing the relation between fracture classification and final scoring.	132
Fig 68	Demography of relation of technique and total range.	133
Fig 69	Demography showing the relation between complications and fracture classification.	134
Fig 70- 73	X rays and clinical photos of case N. (2).	135&136
Fig 74- 78	X rays and clinical photos of case N. (6).	137&138
Fig 79- 83	X rays and clinical photos of case N. (15).	139&140
Fig 84- 88	X rays and clinical photos of case N. (22).	141&142
Fig 89- 92	X rays and clinical photos of case N. (25).	143&144
Fig 93- 97	X rays and clinical photos of case N. (27).	145&146

List of Tables

Table No.	Table Title	Page
Table 1	Approaches Recommended by the Three-Column Classification	56
Table 2	Sex distribution in the study.	90
Table 3	Age distribution in the study.	90
Table 4	Affected side distribution.	91
Table 5	Distribution of mode of trauma.	91
Table6	Distribution of associated general diseases.	92
Table 7	Classifications of skin condition in the study.	92
Table 8	Distribution of articular extension of the fractures in the study.	93
Table 9	Classification of the fractures in the Group of patients in the study.	93
Table 10	ASAMI scoring criteria of complex fractures of the proximal tibia.	113
Table 11	Values of results in ASAMI scoring	114
Table 12	Distribution of frame extension regarding to crossing or non-crossing the knee joint in the study.	115
Table 13	Results of joint line integrity in the study.	117
Table 14	Results of limb alignment in the study.	118
Table 15	Results of the range of flexion and extesnion the study.	119
Table 16	Results of total range of motion in the study.	120
Table 17	Results of limb length discrepancy in the study.	120
Table 18	Character of pain scoring.	121
Table 19	Results of pain scoring in the study.	121
Table 20	Results of postoperative work performance of patients after treatment	122
Table 21	Results of patient's satisfaction.	123
Table 22	Grading of results in ASAMI	124
Table 23	Final scoring in the study.	124

List of tables

Table No.	Table Title	Page
Table 24	Complications in the study.	125
Table 25	Distribution of complications in the study.	127
Table 26	Relation between skin condition and the final scoring.	128
Table 27	Relation between Skin classification and final total scoring in the study.	129
Table 28	Relation between fracture extension and the final score.	130
Table 29	Relation between fracture classification and total score.	131
Table 30	Showing the relation between the technique and total range.	132
Table 31	Showing the relation between complications and fracture classification.	133
Table 32	Master table	134
Table 33	Comparison between our study and some other studies	157

List of Abbreviations

Fig.	Figure
ORIF	Open Reduction and Internal Fixation
SC	Subcutaneous
LPFA	Lateral Proximal Femoral Angle
mLDFA	Mechanical Lateral Distal Femoral angle
JLCA	Joint Line Congruity Angle
MPTA	Medial Proximal Tibia Angle
LDTA	Lateral Distal Tibia Angle
MNSA	Medial Neck Shaft Angle
MPFA	Medial Proximal Femoral Angle
aLDFA	Anatomical Lateral Distal Femoral Angle
PPFA	Posterior Proximal Femoral Angle
ANSA	Anterior Neck Shaft Angle
PDFA	Posterior Distal Femoral Angle
PPTA	Posterior Proximal Tibia Angle
ADTA	Anterior Distal Tibia Angle
A/P	Anterior/Posterior
ACL	Anterior Cruciate Ligament
MCL	Medial Collateral Ligament
LCL	Lateral Collateral Ligament
PCL	Posterior Cruciate Ligament
RTA	Road Traffic Accident
ATLS	Advanced Trauma Life Support
AP	anteroposterior
AO	Association of Osteosynthesis
ASIF	Association and Society of Internal Fixation
OTA	Orthopedic Trauma Association
ROM	Range of Motion
MIO	Minimal Invasive Osteosynthesis
LISS	Less Invasive Stabilization System

DVT	Deep Venous Thrombosis
IM	Intramedullary
IV	Intravenous
OA	Osteoarthritis
TKR	Total Knee Replacement
MCA	Motor Car Accident
ER	Emergency Room
OPD	Out Patient Department
PT	Prothrombin Time
PTT	Partial Prothrombin Time
INR	International Normalized Ratio
OR	Operative Room
IU	International Unit
ASAMI	Association for the Study and Application of the Method of Ilizarov
SPSS	Statistical Program for Social Science
SD	standard deviation

Abstract

<u>Background</u>: Despite the evolution of surgical techniques and implants, high energy proximal tibia fractures remain a challenging problem. The goals of treatment are to obtain a well-aligned stable joint with a painless functional range of motion and prevention of posttraumatic arthritis. Indirect reduction techniques and other soft tissue preservation methods safeguard the vascularity and emphasize restoring both joint congruity and the mechanical axis of the limb. Aim of the work: is to evaluate the use of circular hybrid Ilizarov external fixator with or without minimal internal fixation in the management of high energy proximal tibial fractures. *Methods*: between March 2011 and March 2013 we treated 30 patients with high energy proximal tibia fractures including extra- and intra- articular fractures using the Ilizarov fixator, all patients were a result of high energy trauma. There were 23 male patients and 7 female patients, 14 were Right side while 16 were Left side, mean age was 36.2 years, there were 17 cases with open fractures and 13 patients had closed fractures, 21 patients had intraarticular fractures and 9 patients had extraarticular fractures. Results: all patients united in a mean time of 19 weeks, we had 9 patients with few complications that have been well treated. According to ASAMI scoring system we had excellent results in 66.7%, good results in 26.7%, fair results in 6.6% and no poor results. *Conclusion*: Ilizarov external fixation is a safe and effective treatment option for high energy proximal tibia fractures with good functional results.

<u>Keywords</u>: Ilizarov, circular external fixator, high energy proximal tibia fractures, Schatzker types V and VI.

Introduction

Introduction

The knee joint is one of three major weight-bearing joints in the lower extremity. Fractures that involve the proximal tibia affect knee function and stability. These fractures can either be intra-articular (tibial plateau) or extra-articular (proximal fourth). Generally, these injuries fall into two broad categories: low-energy and high-energy fractures. The spectrum of associated injuries, potential complications and outcomes varies with fracture pattern.⁽¹⁾

There are many classification schemes to describe these injuries, with no clear consensus on indications for surgical treatment of certain fracture patterns. More attention has been paid to the condition of the soft tissue envelope before surgical intervention.⁽¹⁾

Complex fractures of the proximal tibia are difficult to treat and represent one of the most challenging problems in orthopedic surgery as they entail articular depression, condylar displacement, dissociation of comminuted metaphysis, and usually associated with soft tissue injuries.⁽²⁾

The treatment goals are to anatomically reconstruct the proximal tibial articular surface, fix metadiaphyseal comminution, and restore limb axial alignment to allow early knee mobilization and weight bearing and minimize further morbidity to an already traumatized soft tissue envelope. (3)

Over the years, many treatment modalities have been proposed for these complex fractures. Indirect reduction and external fixation have been advocated by many authors to improve the results and to minimize the risk of serious complications associated with the extensile approaches of ORIF. (3)

The Ilizarov method combined with minimal internal fixation enables excellent to good results in most cases of complex proximal tibia fractures when applied with good indications, planning, and surgical experience. (2)