ROLE OF MRI AND ULTRASOUND IN THE ASSESSMENT OF RHEUMATOID ARTHRITIS IN THE HAND AND WRIST JOINTS

Essay

Submitted for partial fulfillment of Master Degree of Radiodiagnosis

By:

Mohamed Elsayed Hussein

M.B.B.Ch
Faculty of Medicine
Ain Shams University

Supervised by:

Prof. Dr. Mohamed Zaky Elhedek

Professor of Radiodiagnosis Ain Shams University

Dr. Amir Louis Louka

Lecturer of Radiodiagnosis Ain Shams University

Faculty of Medicine
Ain Shams University
2016

ABSTRACT

MRI and sonography can be useful tools in evaluating patients with early rheumatoid arthritis. Both imaging techniques can detect preerosive synovitis. They can also identify early bone damage before it becomes apparent on radiography. Furthermore, MRI can be used to predict future bone damage.

Rheumatoid arthritis is characterized by proliferative, hypervascularized synovitis, resulting in bone erosion, cartilage damage, joint destruction, and long-term disability. Diagnosis is based on clinical, laboratory, and radiographic findings.

KEYWORDS

Rheumatoid arthritis; ultrasound; MRI; hand; wrist.

CONTENTS

	List of Abbreviations	III
	List of Tables	IV
	List of Figures	V
	Introduction	1
	Aim of the Work	4
Chapter 1	Anatomy of the Hand and Wrist Joints	5
	- Gross Anatomy	5
	- Sonographic Anatomy	22
	- MRI Anatomy	42
Chapter 2	Basic Physics of Examination Modalities	50
	 Ultrasound and Doppler Physics 	50
	- MRI Physics	56
Chapter 3	Pathology of Rheumatoid Arthritis	66
	- Etiology and risk factors of RA	66
	- Pathophysiology of RA	70
	- Clinical Presentation and	74
	Management of Rheumatoid	
	Arthritis	
Chapter 4	Technique of Examination	79
	- Ultrasound technique	79
	- MRI technique	98
Chapter 5	Manifestations of Rheumatoid Arthritis in	105
	the Hand and Wrist by US and MRI	
	Summary	161
	References	166
	Arabic Summary	188

LIST OF ABBREVIATIONS

AIUM	American institute of ultrasound in medicine
BME	Bone marrow edema
ССР	Cyclic citrullinated peptide
CEUS	Contrast enhanced ultrasound
CMCJ	Carpometacarpal joint
DCE-MRI	Dynamic contrast enhanced magnetic resonance
DIP	Distal interphalangeal joint
DMARDs	Disease modifying anti-rheumatic drugs
DRUJ	Distal radioulnar joint
ECU	Extensor carpiulnaris
EULAR	European league against rheumatism
FCR	Flexor carpiradialis
FOV	Field of view
IL	Interleukin
МСР	Metacarpophalangeal joint
MHz	Megahertz
MRI	Magnetic resonance imaging
MTP	Metatarsophalangeal joint
OMERACT	Outcome measures in rheumatoid arthritis clinical trials
PDUS	Power Doppler ultrasound
PIP	Proximal interphalangeal joint
RA	Rheumatoid arthritis
RAMRIS	Rheumatoid arthritis magnetic resonance imaging score
RF	Rheumatoid factor
RUL	Radioulnar ligament
SH	Synovial hypertrophy
STIR	Short-TI Inversion Recovery
TFCC	Triangular fibrocartilage complex
TNF	Tumor necrosis factor
TUI	Targeted Ultrasound Initiative
UCL	Ulnocarpal ligament
US	Ultrasound

LIST OF TABLES

Table no.	Title	Page no.
1.1	Normal sonographic appearance of different musculoskeletal structures	22
2.1	Image contrast as a function of TR and TE	64
2.2	Signal intensities of different tissues on T1- and T2-weighted images	65
4.1	Ultrasound examination of the Wrist	82
4.2	Ultrasound examination of the Hand	89
4.3	Routine wrist MRI protocol	98
4.4	3-T MRI Protocol for Evaluating the Wrist	99
5.1	Most commonly used ultrasound scoring systems at joint level.	109
5.2	Semi-quantitative scale for grading of proliferate synovitis	110
5.3	Agreement of EULAR-OMERACT PDUS composite scoring system	112
5.4	Pictorial reference of the ultrasound (US) scoring system for semi quantitative assessment of the cartilage damage at metacarpal head level	125
5.5	The OMERACT MRI joint space narrowing (JSN) scoring system	152
5.6	Comparison between US and MRI in RA	157

LIST OF FIGURES

Figure No.	Title	Page No.
1.1	Bones and joints of the hand	7
1.2	The wrist and collateral ligaments	10
1.3	Anatomy of the volar plate at proximal	12
	interphalangeal joint	
1.4	Extensor tendons and its sheaths	14
1.5	Joints and ligaments of the left hand	16
1.6	The pulley system of flexor tendons	17
1.7	Anatomy of the distal radioulnar joint and	19
	triangular fibrocartilage complex	
1.8	Illustration of proximal carpal tunnel and	24
	corresponding ultrasound image	
1.9	Illustration of distal carpal tunnel and	25
	corresponding ultrasound image	
1.10	Axial scan of ulnar nerve between ulnar	26
	artery and pisiform	
1.11	Extensor compartment short axis scan on	27
	the sides of Lister tubercle	
1.12	Extensor compartment short axis scan on	28
	the ulnar side of the wrist	
1.13	Illustration and corresponding ultrasound	29
	image showing Axial scan of distal radio-	
	ulnar joint	
1.14	Surface and radiographic anatomy of	30
	anatomical snuffbox, radial aspect of the	
	wrist	
1.15	Surface and radiographic anatomy of	31
	thumb carpometacarpal joint (Longitudinal	
	scan)	
1.16	Surface and radiographic anatomy of	32

	central palm (Transverse scan)	
1.17	Surface and radiographic anatomy of	33
	hypothenar eminence (Transverse scan)	
1.18	Surface and radiographic anatomy of	34
	thenar eminence (Transverse scan)	
1.19	Illustration of flexor digitorum tendons	36
1.20	Ultrasound scan of the hand palm (short	37
	axis).	
1.21	Structures at the level of metacarpal heads	38
	- palmer aspect of the hand (long axis).	
1.22	Structures at the level of proximal and	39
	distal interphalangeal joints (long axis).	
1.23	Extensor tendons at metacarpophalangeal	40
	joints (long axis).	
1.24	Extensor tendons at proximal and distal	41
	interphalangeal joints (long axis).	
1.25	MRI wrist, axial section (1)	42
1.26	MRI wrist, axial section (2)	43
1.27	MRI wrist, axial section (3)	44
1.28	MRI hand, axial section (1)	45
1.29	MRI hand, axial section (2)	46
1.30	Coronal MRI images with cadaveric	47- 48
	correlation	
1.31	MRI hand and fingers , sagittal section	49
2.1	Longitudinal magnetization	60
3.1	Pathogenesis of rheumatoid arthritis.	66
3.2	Illustration of a normal joint and	71
	rheumatoid arthritis joint.	
3.3	Histological appearance of RA synovium	72
3.4	Pathogenesis of rheumatoid arthritis	73
3.5	Joints commonly involved in rheumatoid	75
	arthritis	
3.6	Hand deformities in rheumatoid arthritis	76
4.1	Head first and prone patient positioning for	101
	a dedicated, multichannel wrist coil	
4.2	Feet first and supine patient positioning for	102
	a dedicated multichannel wrist coil	

4.3	Head first and prone patient positioning for a dual loop coil (TMJ coil) and knee coil	102
5.1	Longitudinal palmar scan of metacarpophalangeal joint: grayscale ultrasound	115
5.2	Longitudinal dorsal scan of metacarpophalangeal joint: grayscale and power Doppler ultrasound	115
5.3	Longitudinal dorsal scan of metacarpophalangeal joint: grayscale and power Doppler ultrasound.	116
5.4	Longitudinal dorsal scan of four metacarpophalangeal joints with different grade of synovitis.	116
5.5	Marginal erosion in an RA patient	119
5.6	An ultrasound normal aspect of extensor carpiulnaris in a transverse scan	122
5.7	Ultrasound longitudinal scan of extensor carpiulnaris with minimal tenosynovitis	123
5.8	ultrasound longitudinal scan of extensor ulnaris carpi with severe tenosynovitis	123
5.9	MRI of the wrist of a patient with clinically active early rheumatoid arthritis	138
5.10	MRIs and X-ray of the hand and wrist of patient with rheumatoid arthritis with ulnar deviation and luxation of the metacarpophalangeal joints	139
5.11	Dynamic contrast-enhanced MRI of wrist and 2nd–5th metacarpophalangeal joints of a patient with early rheumatoid arthritis	140
5.12	Enhancement curves from a series of DCE-MRI images of a patient with RA	142

INTRODUCTION

Recent advances in imaging technology are dramatically changing the approach to patients with inflammatory arthritis. Conventional radiography is still the major imaging modality used to evaluate patients with rheumatoid arthritis (RA) in daily clinical practice, but an ever-growing number of rheumatologists are integrating the radiographic findings with those obtainable using ultrasound (US) and MRI (Colebatch et al, 2013).

In daily clinical practice, four main imaging techniques are used to explore bone and joint involvement in RA: conventional radiography, computed tomography (CT), US and MRI. Other techniques such as nuclear medicine imaging, peripheral quantitative computed tomography (pQCT), digital X-ray radiogrammetry and dual X-ray absorptiometry have limited indications and are less frequently used to image RA patients. Conventional radiography and CT offer information mainly on the bone damage, while US and MRI provide a detailed evaluation of soft tissues, as well (Grassi et al. 2016).

Early diagnosis and personalized treatment is the cornerstone of an effective strategy aimed at inducing clinical

remission and preventing irreversible anatomical damage. Imaging is crucial for fulfilling these tasks. Both US and MRI allow for a careful confirmation of the clinical suspicion of RA by revealing even minimal pathologic changes indicative of soft tissue inflammatory involvement and/or joint damage (Schmidt et al, 2013).

Ultrasound has been demonstrated to be superior to clinical examination in detecting synovitis because of its capability to identify otherwise undetectable fine, soft tissue changes. The main advantages of US, with respect to other imaging techniques, include absence of radiation, good visualization of the joint cavity, low running costs, multiplanar imaging capability, quantifications of soft-tissue abnormalities and real-time imaging. Moreover, it is rapidly performed and readily accepted by patients and may be used to assist needle positioning within the selected target area and facilitate joint aspiration, biopsy and local injections. In RA patients, US can detect a core set of basic findings which indicate either the disease activity or its severity, these include: joint cavity, tendon sheath and bursal enlargement (due to an abnormal amount of synovial fluid and/or synovial hypertrophy), Doppler signal, cartilage damage, tendon tear and bone erosion. A variable combination of these basic findings may be

detected, giving reason for the wide range of pathological changes detectable even in a single RA patient. Each of these findings can be graded using different scoring systems and data obtained in different anatomic sites can be added together to gather information at patient level (**Grassi et al, 2012**) and (**Hammer et al, 2010**).

MRI plays an important role in RA, providing diagnostic and prognostic information. MRI can visualize both the inflammation and the structural damage in RA patients. MRI findings include synovitis, tenosynovitis, bone edema/osteitis, enthesitis, bone erosion and cartilage damage. One of the major advantages of MRI compared to other techniques is the ability to assess bone edema/osteitis, which is visualized only by MRI (**Grassi et al, 2016**).

This review will summarize the options, uses and optimization of these imaging modalities with a special focus on US which is currently the most promising tool to change the paradigms in both early diagnosis and therapy monitoring of RA.

AIM OF THE WORK

The aim of this work is to discuss and compare the role of ultrasound and MRI of the hand and wrist joints in early diagnosis, follow-up and detection of response to treatment in rheumatoid arthritis.

CHAPTER 1 ANATOMY OF THE HAND AND WRIST

(I) GROSS ANATOMY

The anatomic linkage between the distal forearm and the hand is composed of 15 bones: 8 carpal bones, the distal radius and ulnar, and the bases of the 5 metacarpals (**Phillips**, **2013**).

BONES

The carpal bones are divided into two rows: proximal and distal. The proximal carpal row is composed of the scaphoid, lunate, triquetrum, and pisiform. The distal carpal row is comprised of the trapezium, trapezoid, capitate, and hamate (Boggess, 2014).

All carpal bones participate in wrist function except for the pisiform, which is a sesamoid bone through which the flexor carpi ulnaris tendon passes. The scaphoid serves as link between each row; Therefore, it is vulnerable to fractures. The distal row of carpal bones is strongly attached to the base of the second and third metacarpals, forming a fixed unit. All other structures (mobile units) move in relation to this stable unit. The flexor retinaculum, which attaches to the pisiform and hook of hamate ulnarly and to the scaphoid and trapezium radially, forms the roof of the carpal tunnel (Wilhelmi, 2013).

The hand contains 5 metacarpal bones. Each metacarpal is characterized as having a base, a shaft, a neck, and a head. The first metacarpal bone (thumb) is the shortest and most mobile. It articulates proximally with the trapezium. The other 4 metacarpals articulate with the trapezoid, capitate, and hamate at the base. Each metacarpal head articulates distally with the proximal phalanges of each digit (Wilhelmi, 2013).

There are 14 phalanges, three in each finger and two in the thumb. Each has a head, shaft and proximal base. The shaft tapers distally, its dorsal surface transversely convex. The palmar surface is transversely flat but gently concave anteriorly in its long axis (**Standring**, **2015**).

Figure 1.1: Bones and joints of the hand.

Source: www.davidlnelson.md

JOINTS

The anatomy of wrist, thumb and hand is complex because of the presence of many different functional joints: the distal radioulnar joint, the wrist joint (containing the radiocarpal and the intercarpal joints, the carpometacarpal