

Developing an Algorithm for 3D Map Construction Using Multi-robots

Doaa Mahmoud Abd El-Latif

A thesis submitted to the department of Computer Science, Faculty of Computer and Information Sciences, Ain Shams University, in partial fulfilment of the requirements for the degree of Master of Science in Computer and Information Sciences

Supervised by:

Prof. Mohamed Ismail Roushdy
Professor, Department of Computer Science
Dean of Faculty of Computers and Information Sciences
Ain Shams University

Prof. Hassan Ramadan
Professor, Department of Basic Science
Vice Dean of Faculty of Computers and Information Sciences
Ain Shams University

Dr. Mohammed Abdel Megeed Salem
Assistant Professor, Department of Scientific Computing
Faculty of Computers and Information Sciences
Ain Shams University

Acknowledgements

I would like to thank Prof. Mohamed Ismail Roushdy and Prof. Hassan Hassan Ramadan for their help and guidance.

My sincere appreciation and gratitude to Dr. Mohammed Abdel Megeed
Salem for all his effort, and the time that he has devoted to support and
assist me throughout this thesis creation.

Abstract

The idea of making a team of mobile robots perform a collaborative task has numerous benefits in many applications, especially in search and rescue missions and fire fighting.

In this operation scenario a dense three dimensional map of the operation environment will be of great use, but usually it is either not present or it has been changed because of the fire or the collapses in the building.

This research addresses the problem of three dimension map construction using a team of cooperative mobile robots each equipped with a visual sensor. A framework for a collaborative map construction system is proposed along with a comprehensive overview of the state-of-art visual simultaneous localization and mapping algorithms.

Depending only on the vision sensor to perform the complex task of localization and mapping introduces many challenges in the proposed algorithm because usually the data provided by the sensors are noisy and sometimes they interfere with the map updating process resulting in false matches. The use of a team of robots also introduces many challenges such as maintaining a coherent team behaviour, communication between team members, complex tasks decomposition, subtasks assignment and aligning and merging the partial maps constructed by individual robots into one coherent map which is the focus of this study.

The research problem was divided into two parts: first building three dimensional maps using the observations of a single mobile robot applied many times on different parts of the environment, second aligning and merging the m maps constructed by individual robots with different views into one global consistent map.

The map building algorithm was divided into three main parts: registration, loop closure and global optimization. In registration two successive observations of a single

robot were aligned together. This resulted in an erroneous map due to the accumulation of small errors in the registration algorithm and errors in the sensed data causing the resulting map to drift over time. These errors are detected when the robot visits a location that has already been mapped before. The loop is closed and the drift is calculated. Finally global optimization is applied and the drift is corrected along the whole path covered so far.

The aligning and merging algorithm takes the m maps produced from the mapping algorithm and work in pairs aligning and merging them together using the robots starting positions as an initial guess.

The proposed system was evaluated on standard datasets of indoor environments. The evaluation showed that the absolute relative pose error between the estimated robot poses could be reduced to 0.01 meters and 0.56 degrees. Furthermore the results were compared with other state-of-art algorithms showing the strengths and weaknesses of the proposed system.

Contents

1	Intr	oducti	ion	13
	1.1	Motiv	ation	14
	1.2	Proble	em Statement	17
	1.3	Thesis	S Outline	20
2	Bac	kgroui	nd and Related Work	21
	2.1	SLAM	I Description	21
		2.1.1	Localization	22
		2.1.2	Mapping	23
	2.2	Comm	non Sensors Used for SLAM	25
		2.2.1	Global Positioning Systems (GPS)	25
		2.2.2	Sound Navigation and Ranging (SONAR)	26
		2.2.3	LASER	26
		2.2.4	Vision Cameras	27
		2.2.5	Red Green Blue Depth (RGB-D) Cameras	28
	2.3	Map I	Representation	30
		2.3.1	Metric Maps	30
		2.3.2	Feature-based Maps	31
		2.3.3	Topological Maps	31
		2.3.4	Hybrid Maps	32
	2.4	Proba	bilistic SLAM	35
	2.5	Graph	n SLAM	36
	2.6	3D SL	дАМ	38
	2.7	Relate	ed Work	39

	2.8	Dependencies	43		
3	Pro	posed Map Construction and Updating Approach	45		
3.1 Registration					
		3.1.1 Frames Correspondence	47		
		3.1.2 Initial Alignment Estimation	53		
		3.1.3 Refine Alignment	55		
	3.2	Loop Closure and Global Optimization	58		
		3.2.1 Detecting Loops	60		
		3.2.2 Optimizing Loops	60		
4	Mu	lti-Robot Map Alignment and Merging	65		
	4.1	System Classifications	66		
	4.2	Mapping Approaches	70		
	4.3	Map Alignment	74		
	4.4	Proposed Cooperative Map Alignment and Merging Approach	76		
5	Res	ults, Discussion and Analysis	81		
	5.1	Dataset and Evaluation Criteria	81		
	5.2	Results of Registration	84		
	5.3	Results of Global Optimization	88		
	5.4	Results of Map Alignment and Merging	94		
	5.5	Comparison and Discussion	96		
6	Con	nclusion and Future Challenges	101		
Re	References 103				

List of Figures

1.1	Different forms of robots	13
1.2	Robot in a rescue mission in a simulated disaster environment image	
	courtesy to Pathak [1]	15
1.3	Map construction phases	16
1.4	Heterogeneous cooperative robots image courtesy to Lacroix [2]	17
1.5	Building a cooperative map	18
2.1	Overview of the SLAM process	22
2.2	Microsoft kinect device.	28
2.3	Kinect Images Image courtesy the CVPR group [3]	29
2.4	Commonly used map representation for SLAM	30
2.5	Metric map	31
2.6	Topological map	32
2.7	Hybrid map representation each place is represented as a node and an	
	arc is drawn between nodes if they are connected. Each node has a	
	metric map to capture the details of the place	33
2.8	The SLAM problem	36
2.9	Dynamic Bayesian Network showing the SLAM process	37
2.10	The front-end and back-end of the SLAM process	38
3.1	An overview of the proposed algorithm	46
3.2	The registration problem in details	48
3.3	Symmetry test.	51

3.4	3-space point and its images x and x' lie in a common plane called the	
	epipolar plane. epipolar line represents the projection of the ray from	
	the point x through the camera centre C of the first camera in the second	
	image	52
3.5	Iterative procedure of ICP	56
3.6	Each time a certain place is revisited (a loop is detected), a new relation	
	is added to the graph and the graph optimization process is launched to	
	minimize the accumulated error.	59
3.7	Loop closing problem. After 10 nodes, the robot reaches a node with a	
	pose close to an existing node p_2 . It should be investigated for closing	
	the path.	61
3.8	The generated 3D Map with and without loop closure and global opti-	
	mization	62
4.1	Multi-robot approaches classification according to robot capabilities	68
4.2	Different approaches to multi-robot mapping	70
4.3	An overview of our proposed cooperative map alignment algorithm	76
4.4	Aligning two maps together	78
4.5	The Freiburg1_room dataset [3] divided into 4 parts and then aligned	
	and merged together into one map	79
5.1	Percentage of good matches for the algorithms tested	85
5.2	Mean time in ms of the algorithms tested	86
5.3	The generated map using the first 150 frames of the Freiburg1_room	
	dataset.	88
5.4	The generated map using the first 400 frames of the Freiburg2_desk	
	dataset.	90
5.5	The generated map using the first 200 frames of the Freiburg2_pioneer_slar	n
	dataset.	91
5.6	The generated map using the first 200 frames of the Freiburg2_xyz dataset.	92
5.7	The Freiburg2_xyz dataset divided into 3 parts and then aligned and	
	merged together into one map	94

LIST OF FIGURES

5.8	The result trajectory compared to the groundtruth of the Freiburg1_room	
	dataset	95
5.9	The translation error of the Freiburg1_room dataset	96
5.10	The result trajectory compared to the groundtruth of the Freiburg 2_xyz $$	
	dataset	97
5.11	The translation error of the Freiburg2_xyz dataset	98
5.12	The result trajectory compared to the groundtruth of the Freiburg 2_desk $$	
	dataset	99
5.13	The translation error of the Freiburg2 desk dataset	99

List of Tables

2.1	Comparison of the fundamental paradigms of mapping	34
4.1	Classification of Multi-Robot Systems	73
5.1	Dataset description [3]	83
5.2	The average percentage of good matches on all tested datasets	85
5.3	The absolute trajectory error on the freiburg1_room dataset in meters	86
5.4	The relative translation error on the freiburg1_room dataset in meters	86
5.5	The relative rotation error on the freiburg1_room dataset in degrees	87
5.6	The average absolute trajectory error and relative pose error on the	
	tested four datasets	87
5.7	The absolute trajectory error on the Freiburg1_room dataset in meters.	88
5.8	The relative translation error on the Freiburg1_room dataset in meters.	89
5.9	The relative rotation error on the Freiburg1_room dataset in degrees	89
5.10	The absolute trajectory error on the Freiburg2_desk dataset in meters.	90
5.11	The relative translation error on the Freiburg2_desk dataset in meters.	90
5.12	The relative rotation error on the Freiburg2_desk dataset in degrees	91
5.13	The absolute trajectory error on the Freiburg2_pioneer_slam dataset	
	in meters	91
5.14	The relative translation error on the Freiburg2_pioneer_slam dataset	
	in meters	92
5.15	The relative rotation error on the Freiburg2_pioneer_slam dataset in	
	degrees	92
5.16	The absolute trajectory error on the Freiburg2_xyz dataset in meters	93
5.17	The relative translation error on the Freiburg2_xyz dataset in meters	93

5.18	The relative rotation error on the Freiburg2_xyz dataset in degrees	93
5.19	The result after aligning and merging the Freiburg1_room dataset	95
5.20	The result after aligning and merging the Freiburg 2_xyz dataset. $\ . \ . \ .$	96
5.21	The result after aligning and merging the Freiburg2_desk dataset	97
5.22	Comparison of the Freiburg1_room dataset results with Felix Endres	
	[4], Miguel Algaba [5] and Jorg Stuckler [6] approaches	98

List of Publications

- [1] D. M. A.-Latif, M. A.-M. Salem, H. Ramadan, and M. I. Roushdy, "Comparison of 3d feature registration techniques for indoor mapping," in 8th IEEE International Conference on Computer Engineering and Systems (ICCES), pp. 239-244, 2013.
- [2] D. M. A.-Latif, M. A.-M. Salem, H. Ramadan, and M. I. Roushdy, "Comparison of optimization techniques for 3d graph-based slam," in 4th European Conference of Computer Science (ECCS '13), 2013.
- [3] D. M. A.-Latif, M. A.-M. Salem, H. Ramadan, and M. I. Roushdy, "On 3d map alignment for multi-robot visual slam," in *International conference on Industry Academia collaboration*, 2014.
- [4] D. M. A.-Latif, M. A.-M. Salem, H. Ramadan, and M. I. Roushdy, "3D Graph-based Vision-SLAM Registration and Optimization," International Journal of Circuits, Systems and Signal Processing, vol. 8, 2014.