

Cairo University

Faculty of Veterinary Medicine

Dept. of Biochemistry and Chemistry of Nutrition

MicroRNAs and Liver Fibrosis in Hepatitis C Patients

Thesis presented by

Asmaa M. Abd Elwahab Mohamed

B.V.Sc. Fac. Vet. Med., Cairo Univ., 1999 Microbiology Diploma Fac. Vet. Med. Cairo Univ., 2001 Clinical pathology Diploma in Fac. Vet. Med. Cairo Univ., 2010

For

M. V. Sc. Degree

Biochemistry and Chemistry of Nutrition

Under the supervision of

Prof. Dr. Eman M. Gouda

Professor of Biochemistry and Chemistry of Nutrition.
Faculty of Vet. Medicine
Cairo University

Dr. Hanan A. Mohamed Prof. Dr. Samy Zaky Elsayed

Lecturer of Biochemistry and Chemistry of Nut. Faculty of Vet. Medicine Cairo University Professor of Tropical Medicine Faculty of Medicine Al-Azhar University

(2016)

Cairo University

Faculty of Veterinary Medicine

Dept. of Biochemistry and Chemistry of Nutrition

Name	: Asmaa Mohammed Abd Elwahab
Nationality	: Egyptian
Date of birth	n : 24 / 5 /1976
Place of birtl	h: Cairo
Specification	: Biochemistry and Chemistry of Nutrition
Thesis title	"MicroRNAs and Liver Fibrosis in Hepatitis C Patients"
Supervisors	: Prof. Dr. Eman M. Gouda
	Prof. Dr. Samy Zaky Elsayed
	Dr. Hanan A. Mohamed

Abstract

Egypt has the highest prevalence of hepatitis C virus (HCV) in the world. HCV chronic infection leads to progressive liver damage that ends finally with fibrosis. Predictive biomarkers for liver fibrosis progression are a must for treatment strategies development. Circulating microRNA levels have become a rapidly growing area of clinical research. Circulating miR-29 as a potential new hepatic stellate cell (HSC) activation marker and miR-155 as a positive regulator of inflammation were evaluated in the serum of chronic HCV patients, attended to AL-Azhar University Hospitals, relative to normal individuals and correlated these with clinical patient data. Our results reveal that, the level of miR-29b is decreased while miR-155 is increased in correlation to the fibrotic grade and fibrotic index in male and female chronic HCV patients.

In conclusion, down-regulation of miR-29b and up-regulation of miR-155 are associated with the advance in fibrotic grade; making them a potential non-invasive biomarker for assessment of liver fibrosis in chronic HCV.

Keywords: Biomarker, miR-29b, miR-155, fibrotic grade, HCV, Egypt

<u> ACKNOWLEDGEMENTS</u>

First and foremost, many thanks to Allah to whom I relate any success in achieving any work in my life.

Second; words are not enough to express my deepest gratitude and many thanks to **Prof. Dr. Eman M. Gouda**, Professor of Biochemistry and Chemistry of Nutrition, Faculty of Vet. Medicine, Cairo University for her kind supervision, faithful guidance, continuous encouragement, sincere advice and support throughout this work.

I would like also to express my deep thanks and great appreciation to **Prof. Dr.**Samy Zaky Elsayed; Professor of Tropical Medicine, Faculty of Medicine, AL
Azhar University for his kind supervision, valuable and constant advice, faithful guidance, continuous help and directions throughout this work.

I wish also to express my deep thanks and great appreciation to **Dr. Hanan Abd El salam Mohamed**; Lecturer of Biochemistry and Chemistry of Nutrition, Faculty of Vet. Medicine, Cairo University for her kind supervision, faithful guidance, continuous helps and support throughout this work.

A very great gratitude and many thanks have to be expressed deeply to **Dr. Ola**Sayed; Lecturer of Virology in Oncology Institute, Cairo University for her advicements and help during this work.

A very great gratitude and many thanks have to be expressed deeply to my friend, Miss. Nesma Hassan for her continuous help throughout this work.

Finally, no words can express my gratitude to my parents who never hesitated in providing the opportunities for the progress and success. And also many thanks for their never-ending love and support.

Cairo University

Faculty of Veterinary Medicine

Dept. of Biochemistry and Chemistry of Nutrition

Supervision Sheet

Supervisors

Prof. Dr. Eman M. Gouda Professor of Biochemistry and Chemistry of

Nutrition.

Faculty of Vet. Medicine

Cairo University

Dr. Hanan A. Mohamed Lecturer of Biochemistry and Chemistry of Nut.

Faculty of Vet. Medicine

Cairo University

Prof. Dr. Samy Zaky Elsayed Professor of Tropical Medicine

Faculty of Medicine Al-Azhar University

Dedication

To the source of love and happiness in my life. To my husband "Mohamed Soliman", who has been a constant source of support and encouragement throughout this work. I am truly thankful for having you in my life.

This work is also dedicated to my parents who share me the load and gave me the strength to bear any difficulties and whose good examples have taught me to work hard for the things that I aspire to achieve.

CONTENTS

	Page
1. INTRODUCTION	1
2. REVIEW OF LITERATURE	5
2.1Liver	5
2.1.1 Liver Cell Types	5
2.1.2 Extracellular matrix (ECM)	. 7
2.2 Chronic Liver Diseases (CLD)	12
2.2.3 Viral Hepatitis C	13
2.2.3.1 Hepatitis C virus (HCV) Structure	14
2.2.3.2 Genotypes and subtypes of HCV	. 14
2.2.3.3 HCV prevalence in Egypt	. 15
2.2.3.4 Transmission of HCV	15
2.2.13.5 Symptoms	17
2.2.3.6 Factors influence disease progression in chronic hepatitis C.	. 18
2.3Liver Fibrosis	20
2.3.1 Causes of Liver Fibrosis	21
2.3.2 The Biology of Liver Fibrosis	. 21
2.3.3 HCV and liver fibrogenesis	. 22

2.3.4 Liver Fibrosis assessment.	25
2.3.4.1 Invasive method for assessing liver fibrosis (Liver biopsy)	25
2.3.4.2 Non-invasive(Alternative)methods for assessing liver fibrosis	28
2.4MicroRNA	39
2.4.1 Discovery of the first miRNA: lin-4	39
2.4.2 Discovery of the second miRNA: Let-7.	40
2.4.3 Genomic distribution of miRNA	40
2.4.4 Biological Roles of MicroRNAs	41
2.4.5 Biogenesis	42
2.4.6 MicroRNA localization	46
2.4.7 Circulating miRNAs as biomarkers	46
2.4.8 microRNAs in disease: an historical perspective	47
2.4.9 miRNAs and hepatic fibrosis	49
2.4.10 Therapeutic implications of miRNA	54
2.4.11 Methods for miRNA profiling	55
3.MATERIAL AND METHODS	60
3.1 Patients and Samples	60
3.2 Methods	61
3.2.1 Blood Samples	61

3.2.2 Biochemical examination for fibrotic indices	62
3.2.3 Quantification of HCV-RNA for CHC group	. 65
3.2.4 Liver biopsy and Histopathological determinations	66
3.2.5 Total RNA extraction.	67
3.2.6 Measurement of RNA quantity and quality	68
3.2.7 MicroRNA profiling by quantitative PCR	69
3.2.8 SYBR-Green I based Real-time-PCR quantification	71
3.2.9 Statistical analysis.	73
4. RESULTS	. 74
5. DISCUSSION	88
6. CONCLOSION	98
7. SUMMARY	99
8. REFERENCES	103
ARABIC SUMMARY	

LIST OF TABLES

Page
Table 4.1: The differences between sex, Age and Negative HCV RNA and Positive HCV RNA groups. 75
Table 4.2: Percentages of necroinflamatory activity and fibrosis stages in females and male
chronic HCV patients in the current study.
Table 4.3: AST, ALT, AST/ALT ratio, Platelets, Prothrombin Conc% and INR in both Negative HCV RNA and Positive HCV-RNA groups.
Table 4.4b: Platelets count , APRI score, Prothrombin conc% and INR in healthy control and chronic HCV patients with different fibrotic stages. 82
Table 4.5: Expression level and fold change of miR- 29b and miR- 155 in healthy control and chronic HCV patients with different fibrotic stages fibrosis stages. 85
Table 4.6: Correlation between the expression level of of miR-29b and miR- 155 and Age, Viral load and indirect fibrotic biomarkers