# Anesthetic Management of Patients with Cardiovascular Implantable Electronic Devices

An Essay

Submitted for Partial Fulfillment of Master Degree in Anesthesia

#### Presented by Ahmed Abdo Mohamed Abd-Allah

M.B., B.Ch

Faculty of Medicine - Ain Shams University

### Supervisors

## **Prof. Dr. Omar Mohamed Taha ElSafty**

Professor of Anesthesia and Intensive Care Faculty of Medicine - Ain Shams University

#### Prof. Dr. Azza Atef Abdel-Alim Ahmed

Professor of Anesthesia and Intensive Care Faculty of Medicine - Ain Shams University

## **Ass. Prof. Hanaa Mohamed Abd-Allah El Gendy**

Assistant Professor of Anesthesia and Intensive Care Faculty of Medicine - Ain Shams University



Faculty of Medicine Ain Shams University 2015

# بِسْمِ اللَّهِ الرّحَمَٰنِ الرّحيمِ

الَّذِي اَنْمُمْتَ عَلَيٌّ وَعَلَمُ وَالِحَيُّ اللَّهِ الْحَمَلَكَ وَالْحَيُّ

أَرِ صِهِزَاهِ فِعَهُ عَلَادُهِ الصَّالِكِيارُ لَيْ الصَّالِكِيارُ عَلَيْهُ الْصَّالِكِيارُ وَالْمُ

صدق الله العظيم

النمل.. اية رقو ١٩



First, and foremost, my deepest gratitude and thanks should be offered to "ALLAHI", the Most Kind and Most Merciful, for giving me the strength to complete this work.

I would like to express my sincere gratitude to **Prof. Dr. Omar Mohamed Taha ElSafty**, Professor of Anesthesia and Intensive Care, Faculty of Medicine - Ain Shams University, for his continuous support and guidance for me to present this work. It really has been an honor to work under his generous supervision.

I acknowledge with much gratitude to **Prof. Dr.**Azza Atef Abdel-Alim Ahmed, Professor of Anesthesia and Intensive Care, Faculty of Medicine - Ain Shams University, for her great supervision and unlimited help to provide all facilities to accomplish this work.

I can't forget to thank **Assist. Prof. Hanaa Mohamed Abd-Allah El Gendy**, Assistant Professor of Anesthesia and Intensive Care, Faculty of Medicine - Ain Shams University, for her great efforts and time she has devoted for this work.

Last but not least, thanks to my Parents, my Wife and Daughter for pushing me forward in every step in my life.

# **Contents**

| Subject        | Page N                                                                  | Page No. |  |
|----------------|-------------------------------------------------------------------------|----------|--|
| List of Abbre  | viations                                                                | i        |  |
| List of Tables | Si                                                                      | ii       |  |
| List of Figure | esi                                                                     | V        |  |
| Introduction   | ••••••                                                                  | 1        |  |
| Aim of the wo  | ork                                                                     | 3        |  |
| Chapter (1):   | Cardiovascular Physiology                                               | 4        |  |
| Chapter (2):   | Pathological Conditions Affecting<br>Cardiac Rhythm and Contractility 1 | 7        |  |
| Chapter (3):   | Cardiac Implantable Electronic Devices                                  | 0        |  |
| Chapter (4):   | Anesthetic Management of Patients with CIED6                            | 3        |  |
| Chapter (5):   | Complications of the Cardiovascular Implantable Electronic Devices      | 2        |  |
| Summary        | 7                                                                       | 6        |  |
| References     | 8                                                                       | 0        |  |
| Arabic Sumn    | 1ary                                                                    |          |  |

#### **List of Abbreviations**

**ACE** : Angiotensin converting enzyme

**ACT** : Activated clotting time

**AF** : Atrial Fibrillation

**AICD** : Automatic implantable cardioverter-defibrillators

**ANP** : Atrial natriuretic peptide

**ASA** : American Society of Anesthesiologists

**AVN** : Atrioventricular node

**BPEG** : British pacing and electrophysiology group

**BPM** : Beat per minute

**CAD** : Coronary artery disease

**CCB** : Calcium channel blocker

**CIED** : Cardiac implantable electrical device

**COP** : Cardiac output

**CRT** : Cardiac resynchronization device

**CS** : Coronary sinus

**ECT** : Electroconvulsive therapy

**EDP** : End diastolic pressure

**EDV** : End diastolic volume

**EF** : Ejection fraction

**EMI** : Electromagnetic interference

**EP** : Electrophysiological

**ESC** : European Society of Cardiology

**ESP** : End systolic pressure

#### List of Abbreviations (Cont.)

**ESU** : Electrosurgical unit

**ESV** : End systolic volume

**ESWL** : Extracorporeal shock wave lithotripsy

**HF** : Heart failure

**HFA** : Heart Failure Association

**ICD** : Implantable cardioverter defibrillator

**LBBB** : Left bundle branch block

**LV** : Left ventricle

MI : Myocardial infarction

**MRI** : Magnetic resonance imaging

**MVO2** : Mixed venous oxygen saturation

**NASPE** : North American society of pacing and

electrophysiology

**NBD** : NAPSE\BPEG Defibrillator

**NYHA** : New York Heart Association

PM : Pacemaker

PMT : Pacemaker mediated tachycardia

PTCA : Percutaneous transluminal angioplasty

**RAA** : Renin angiotensin aldosterone

**RBBB** : Right bundle branch block

**RF** : Radiofrequency

**RMP** : Resting membrane potential

# List of Abbreviations (Cont.)

**RV** : Right ventricle

**TENS**: Transcutaneous electrical nerve stimulation

**SA** : Sino atrial node

**SR** : Slew rate

**SV** : Stroke volume

VA : Ventriculoatrial

**VF** : Ventricular fibrillation

**VT** : Ventricular tachycardia

# **List of Tables**

| Table W           | lo. Title                                                     | Page No. |
|-------------------|---------------------------------------------------------------|----------|
| <b>Table (1):</b> | Factors Affecting Contractility                               | 16       |
| <b>Table (2):</b> | Classification of Heart Block                                 | 18       |
| <b>Table (3):</b> | Generic codes for pace makers                                 | 42       |
| <b>Table (4):</b> | Factors determining the type and of CIED                      | 1        |
| <b>Table (5):</b> | British pacing and electrophysiol recommended pacemaker modes |          |
| <b>Table</b> (6): | Generic defibrillator (NBD NASPE/ BPEG                        |          |
| <b>Table (7):</b> | Cardiac Contractility Modulation                              | 61       |

# **List of Figures**

| Figure T            | lo. Title Pag                                                                                     | e No. |  |  |  |  |
|---------------------|---------------------------------------------------------------------------------------------------|-------|--|--|--|--|
| Figure (1):         | Phases of cardiac cycle                                                                           | 8     |  |  |  |  |
| Figure (2):         | Events of cardiac cycle in relation to changes in atrial, ventricular, aortic pressure and volume |       |  |  |  |  |
| Figure (3):         | First degree heart block in ECG                                                                   |       |  |  |  |  |
| Figure (4):         | Second degree heart block in ECG                                                                  |       |  |  |  |  |
| Figure (5):         | Second degree heart block in ECG (Mobitz type 2)                                                  |       |  |  |  |  |
| Figure (6):         | RBBB in ECG                                                                                       | 22    |  |  |  |  |
| <b>Figure (7):</b>  | LBBB in ECG                                                                                       | 23    |  |  |  |  |
| Figure (8):         | Third degree heart block in ECG                                                                   | 24    |  |  |  |  |
| Figure (9):         | Mechanism of re-entry in cardiac muscles 30                                                       |       |  |  |  |  |
| <b>Figure (10):</b> | Ventricular fibrillation34                                                                        |       |  |  |  |  |
| <b>Figure (11):</b> | Inserted permanent pacemaker41                                                                    |       |  |  |  |  |
| <b>Figure (12):</b> | Electrocardiographic evidence of pacemaker function with a DDD pacemaker                          |       |  |  |  |  |
| <b>Figure (13):</b> | Pacemaker in chest x-ray                                                                          | 50    |  |  |  |  |
| <b>Figure (14):</b> | Relation between Cardiac contractil modulation (CCM) signals and EC changes                       | CĞ    |  |  |  |  |
| <b>Figure (15):</b> | Chest X-ray showing an implanted CC system and an one-chamber ICD device                          |       |  |  |  |  |

# List of Figures (Cont.)

| Figure V            | lo.       | Title          |                 | Page No. |
|---------------------|-----------|----------------|-----------------|----------|
| <b>Figure (16):</b> | induced   | changes in e   | ejection fracti | ` '      |
| <b>Figure (17):</b> | Cardiac D | evice Interrog | gated           | 64       |

#### Introduction

ysrhythmia is an abnormal heart rhythm. In which the heart beats may be too slow, too rapid, too irregular, or too early. Rapid arrhythmias (greater than 100 beats per minute) are called tachycardias. Slow arrhythmias (slower than 60 beats per minute) are called bradycardias. Irregular heart rhythms are called fibrillations (as in atrial fibrillation and ventricular fibrillation). When a single heart beat occurs earlier than normal, it is called a premature contraction. When dysrhythmias are severe or last long enough to affect how well the heart works, the heart may not be able to pump enough blood to the body. In most of cases sudden cardiac arrest (SCA) is fatal leading to sudden death (*Pell*, 2008).

The most common indications for pacing currently include: symptomatic bradycardia (resulting from sinus node dysfunction), atrioventricular conduction block after catheter ablation of the AV node or junction, Neurocar- diogenic syncope and selected patients with Hypertrophic cardiomyopathy or the long QT syndrome (**Gregoratos** *et al.*, 2002).

Cardiovascular implantable electronic device were first introduced in 1958, then implantable cardioverter-defibrillator followed in 1980. Since then, more than 2000 models of pacemakers. There has been a significant change

not only in pulse generators and leads but also in the indications for pacing, pacing modalities, implantation techniques and follow up of patients with implanted pacing devices (*Bryce et al.*, 2001).

CIEDs include PM, ICD, cardiac resynchronization device, implantable loop recorder and implantable cardiovascular monitor (*Nacarelli et al.*, 2008).

The number of patients with (CIEDs; previously termed cardiac rhythm management devices) continues to grow at an astonishing rate worldwide, but the level of comfort most anesthesiologists have in managing such patients in the perioperative period has not kept pace with that growth (*Stone and Apinis*, 2009).

# Aim of the work

The main intent of this essay is to provide recommendations that promote safe management of patients with cardiovascular implantable electronic devices (CIEDs) throughout the perioperative period.

# Chapter (1): Cardiovascular Physiology

#### **Cardiac Muscle**

The cardiac muscle is the collection of individual cells (cardiomyocytes) that are linked as a syncytium by gap junctional communication. Cardiac muscle cells also undergo excitation contraction coupling. Pacemaker cells in the heart can initiate propagated action potentials. Cardiac muscle cells also have a striated, actomyosin system that underlies contraction (Scott B. 2010).

#### **Cardiac Action Potential**

The myocardial cell membrane is normally permeable to K<sup>+</sup> but is relatively impermeable to Na<sup>+</sup>. A membrane-Na<sup>+</sup>-K<sup>+</sup>-adenosine triphosp- hatase (ATPase) concentrates K<sup>+</sup> intracellularly in exchange for extrusion of Na<sup>+</sup> out of the cells. Intracellular Na<sup>+</sup> concentration is kept low, whereas intracellular K<sup>+</sup> concentration is kept high relative the extracellular The relative to space. impermeability of the membrane to calcium also maintains a extracellular calcium high cytoplasmic gradient. to Movement of K<sup>+</sup> out of the cell and down its concentration gradient results in a net loss of positive charges from inside the cell. An electrical potential is established across the cell membrane, with the inside of the cell negative with respect to the extracellular environment, because anions do not accompany K<sup>+</sup>. Thus, the resting membrane potential represents the balance between two opposing forces: the movement of K<sup>+</sup> down its concentration gradient and the electrical attraction of the negatively charged intracellular space for the positively charged potassium ions (**Richard W**, *2013*).

The differences between the membrane properties of cardiac and skeletal muscle account for the prolonged action potential in cardiac muscle. This is because the action potential in cardiac muscle is caused by opening of two types of channels: (1) the same fast sodium channels as those in skeletal muscle and (2) another entirely different population of slow calcium channels, which are also called calcium-sodium channels. This second population of channels differs from the fast sodium channels in that they are slower to open and, even more important, remain open for several tenths of a second. During this time, a large quantity of both calcium and sodium ions flows through these channels to the interior of the cardiac muscle fiber, and this maintains a prolonged period of depolarization, causing the plateau in the action potential (Korzick DH, 2003).