

Ain Shams University Faculty of Education Department of Physics

"The effect of temperature and third element addition on the properties of Albase alloy"

Thesis

Submitted for the Doctor of Philosophy Degree of the Teacher's Preparation in Science (Physics)..

To

Department of Physics- Faculty of Education

Ain Shams University

By

Hanan Abd El-Aleem Abd El-Rhman Moustafa

B.Sc. and Education, Gen. Diploma (Physics) and Spec. Diploma (Physics) Master(physics).

Supervised by

1-Prof. Dr. Mohamed Samy El-Sayed Sakr

Physics Department, Faculty of Education, Ain Shams University.

2-Prof.Dr. Mostafa Mohamed Mostafa Hussien

Physics Department, Faculty of Education, Ain Shams University.

3-Prof .Dr . Mostafa Mohamed El-sayed

Physics Department, Faculty of Education, Ain Shams University

4-Prof. Dr. Radwan Hamouda Nada

Physics Department, Faculty of Education, Ain Shams University

5-Dr. Hamdi Abd El-Glyel El-Sayed

Physics Department, Faculty of Education, Ain Shams University.

Approval sheet

Approval sheet

Title: The effect of temperature and third element addition on the properties of Al-base alloy

Candidate: Hanan Abd El-Aleem Abd El-Rhman Moustafa

Degree: Doctor of philosophy degree of the Teacher's Preparation in Science (Physics).

Board of Advisors

Approved by

Signature

1. Prof. Dr. Mohamed Samy Sakr

Physics Department, Faculty of Education, Ain Shams University.

2. Prof. Dr. Mostafa Mohamed Mostafa Hussien

Physics Department, Faculty of Education, Ain Shams University.

3. Prof. Dr. Mostafa Mohamed El-Sayed

Physics Department, Faculty of Education, Ain Shams University.

4. Prof.Dr.Radwan Hamouda Nada

Physics Department, Faculty of Education, Ain Shams University

5. Dr. Hamdi Abd El-Glyel El-Sayed

Physics Department, Faculty of Education, Ain Shams University

Date of presentation: / / 2015

Post graduate studies:

Stamp: / / Date of approval: / /

Approval of Faculty Council: / /2015

Approval of University Council: / /2015

Acknowledgement

Acknowledgement

Before all and above all, many thanks to Allah, the most gracious the most merciful.

The auther wishes to express her deep gratitude to *Prof Dr./Mohamed Samy El-Sayed Sakr*, for his valuable help, useful discussion and suggestion, continuous encouragement and supervision throughout this work.

The author wishes indebted with her utmost thanks to *Prof. Dr. Mostafa Mohamed Mostafa Hussien* for continuous supervision, valuable suggestions, encouragement and fruitful advice through this work.

The author wishes to thank *Prof. Dr. Mostafa Mohamed El-sayed* for his valuable help, encouragement and fruitful advice throughout this work.

The author wishes to thank *Prof. Dr. Radwan Hamouda Nada* for his valuable help, encouragement and fruitful advice throughout this work.

Acknowledgement

The author wishes to thank .Dr. Hamdi Abd El-Glyel El-Sayed for his valuable help, encouragement and fruitful advice throughout this work.

The author wishes to thank the head of the physics department for the offered facilities and the assistance of the staff members and colleagues of the laboratory.

Contents

Contents

	Page
List of figures	IV
List of Equations	X
Summary	XIII
Chantor	<i>I</i> \

<u>Cnapter(1)</u> Introduction

<u>Creep</u>

1.1. The Creep phenomenon	2
1.2. Creep Mechanism	
1.3. Effect of alloying on strength and creep	
characteristic.	
	_
1.4. Modes of deformation in creep	
1.4.1. Intragranualar creep deformation	10
1.4.2. Role of grain boundaries during	10
Creep deformation.	
1.5 Mechanism of creep in polycrystalline	11
materials	
1.5.1. Climb of edge dislocation	11
1.5.2. Motion of sessile jogs	
1.5.3. Lattice friction stress.	
1.6 Temperature dependence of creep	12
1.7. Creep theories	13
1.7.1 . Transient creep theories	
1.7.2. Steady state creep theories	
1.7.2.1. Dislocation creep theories for alloys	
1.7.2.2. Dispersion-hardening dislocation creep	

Contents

theory.	
1.8. The stress strain curve	21
1.9 The theories of work –hardening	24
1.9.1. The "forest "theory of work –hardening	24
1.9.2. The" jog" theory of work hardening	24
1.9.3 . The "long –range stress" theory of hardening	25
(i) Stage I of the stress – strain curve	
(ii) Stage II of the stress-strain curve	26
(iii) Stage III of the stress –strain curve	26
1.10. The Aluminum –Silver phase diagram	27
1.11. Literature Review.	
1.12. Object and scope of the present work	38
<u>Chapter II</u>	
Experimental techniques	
2.1 Preparation of alloys	40
2.2 The creep testing machine	41
2.2.1. Description of the creep apparatus	
2.2.2. Wire Mounting	
2.2.3. Creep test at working temperature	
2.3. Stress- strain tests	45
2.3.1.Tensile testing machine	45
2.4. X-ray diffraction measurements	47
<u>Chapter III</u>	
Experimental Results	
Creep curves.	51
3.1. Effect of Aging Temperature on the Creep	
Characteristic of Al-Ag alloys at the working temperature	
3.1.1. Transient creep	
3.1.2. Transient creep parameters n, β	
3.1.3 The steady state creep	
3.1.4 Activation energy of the steady state creep	
3.2. X-Ray Examinations	
3.3 . Stress- strain characteristics	
3.3.1. Stress-strain curves	

Contents	
3.3.2. Effect of temperature	87
3.4 X-Ray Examination	88
4.1. Creep	97
4.1.1. Transient creep.	
4.1.2. Steady state creep	
4.2. Stress –strain.	102
<u>Chapter. V</u> <u>Conclusions</u>	
5.1. Creep	
5.1.1.Transient Creep	107
5.1.2. Steady state creep	107
5.2. Stress –strain	108
References	110-112
الملخص العربي	٣-١

List of Figures

FIG	CAPTION	PAGE
Fig.(1.1)	Creep curve under Constant Stress and	4
	temperature	
Fig.(1.2)	Creep Deformation Map for metals	6
Fig.(1.3)	Schematic diagram showing vacancy	
rig.(1.3)	flow in a grain under tensile and	19
		19
	compressive stresses.	
Fig. (1.3)	A typical stress-strain curve of FCC	23
	system.	
Fig.(1.4)	The aluminum end of the aluminum -	28
	Silver equilibrium diagram.	
Fig.(2.1)	Schematic diagram of creep apparatus.	42
Fig.(2.2)	The calibration curve of Nickel-Nickel	44
	Chrome thermocouple.	
Fig.(2.3)	The schematic diagram of the tensile	
	testing machine.	
Fig.(2.4).	Schematic diagram of x-ray	49
	differactometer.	
Fig. (3.1a)	Creep curves at different applied stresses	
	and different temperatures for the Al-1wt.	53
	%Ag alloy.	
Fig.(3.1b)	Creep curves at different applied stresses	54
	and different temperatures for the Al-1wt.	
	%Ag-0.5wt%Cu alloy.	

Fig.(3.1c)	Creep curves at different applied stresses	55
	and different temperatures for the Al-1wt.	
	%Ag-0.5wt%In alloy.	
Fig.(3.2a)	The relation between $In\varepsilon_{tr}$ and Int for Al -	57
	1.0wt%Ag alloy.	
Fig(3.2b)	The relation between $In\epsilon_{tr}$ and $Int\ for\ Al-1.0wt\%Ag\ -0.5wt\%Cu$ alloy	58
Fig.(3.2c)	The relation between Inε _{tr} and Int for Al-	59
	1.0wt%Ag -0.5wt%In alloy.	
Fig.(3.3a)	The temperature dependence of β and n	60
	for Al-1.0wt% Ag alloy.	
Fig.(3.3b)	The temperature dependence of β and n	61
	for Al-1.0wt% Ag-0.50wt% Cu alloy.	
Fig.(3.3c)	The temperature dependence of β and n	62
	for Al-1.0wt% Ag 0.5wt% In alloy.	
Fig.(3.4a,b,c)	The linear relations between Inβ and Inε st for (a) Al-1.0wt% Ag(b) Al-1.0wt% Ag-	63
	0.5wt%Cu (c) Al-1.0wt%Ag-0.5wt%In alloys.	
Fig.(3.5a,b,c)	Relation between Ins _{tr} and 1000/T(K) ⁻¹ at	65
	different stresses for (a) Al-1.0wt% Ag(b) Al-1.0wt% Ag-0.5wt% Cu and (c) Al-	
	1.0wt%Ag-0.5wt%In alloys.	

Fig (3.6a,b,c)	Strain rate-Stress relationship for (a) Al-1.0wt%Ag(b) Al-1.0wt%Ag -0.5wt%Cu (c) Al-1.0wt%Ag-0.5wt%In alloys.	67	
Fig(3.7a)	Dependence of the steady strain rate ϵ 'st and strain rate sensitivity parameter m on the deformation temperature for Al-1.0wt% Ag alloy.	68	
Fig(3.7b)	Dependence of the steady strain rate ϵ_{st} and strain rate sensitivity parameter m on the deformation temperature for Al-1.0wt%Ag-0.5wt%Cu alloy.		
Fig(3.7c)	Dependence of the steady strain rate ϵ_{st} 70 and strain rate sensitivity parameter m on the deformation temperature for Al-1.0wt%Ag-0.5wt%In alloys.		
Fig(3.8a,b,c)	Relation between In ε_{st} and 1000/T for(a) Al-1.0wt%Ag (b) Al-1.0wt%Ag-0.5wt%Cu (c) Al-1.0wt%Ag-0.5wt%In alloys.	73	
Fig(3.9a,b,c)	The X-ray diffraction pattern of samples crept at T=503,493,483 K for Allwt.%Ag alloy.	74	
Fig(3.9d,e,f)	The X-ray diffraction pattern of samples crept at T=473,463,453 K for Allwt.% Ag alloy	75	
Fig.(3.10-a)	The relation between $\beta\cos\theta/\lambda$ and $\sin\theta/\lambda$ at the deformation temperature T=453,463 and 473K.	76	
Fig.(3.10-b)	The relation between $\beta\cos\theta/\lambda$ and $\sin\theta/\lambda$ at the deformation temperature T=483, 493 and 503K.	77	

Fig.(3.11)	The variation of the parameters ϵ , η and	78
	$\delta(1/\eta^2)$ with the deformation temperature	
	during creep experiments.	
Fig.(3.12a,b,c)	The effect of the working temperature on (a) The half line width (b)the integral X- ray intensities and(c) The lattice parameter a for Al-1.0wt. %Ag alloy.	79
Fig.(3.13a,b)	Stress-Strain curves of quenched and	81
	slowly cooled of Al-1wt%Ag alloy.	
Fig(3.13c,d)	Stress-Strain curves of quenched and slowly cooled of Al-1.0wt%Ag-0.5wt%Cu alloy.	82
Fig.(3.14a)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	84
Fig.(3.14b)	The deformation temperature dependence of work hardening parameters σ_y , σ_f , t_f and χ of Al-1.0wt% Ag-0.5wt% Cu alloy.	85
Fig.(3.14c)	The deformation temperature dependence of work hardening σ_y , σ_f , t_f and χ of Al-1wt%Ag-0.5wt%In alloy.	86
Fig.(3.15)	Relation between Intf and 1000/T for the	89
	quenched and slowly cooled for(a)Al-	
	1.0wt%Ag,(b)Al-1.0wt%Ag-0.5wt%Cu	
	and(c) Al-1.0wt%Ag-0.5wt%In alloys	

Fig3.16(a,b,c)	The X-ray diffraction pattern of samples	90
	annealed at T=453,463,473 K for Al-	
	1wt.%Ag alloy.	
Fig3.16(d,e,f)	The X-ray diffraction pattern of samples annealed at T=483,493and 503KforAl-1wt%Ag alloy.	91
Fig.(3.17-a)	The relation between $\beta\cos\theta/\lambda$ and $\sin\theta/\lambda$	92
	at the deformation temperature at T=453,	
	463 and 473K.	
Fig.(3.17-b)	The relation between $\beta\cos\theta/\lambda$ and $\sin\theta/\lambda$	93
	at the deformation temperature at T=483,	
	493 and 503K.	
Fig.(3.18)	The variation of the parameters ϵ , η and	
	$\delta(1/\eta^2)$ with the deformation temperature	
	during Stress-Strain experiments.	
Fig(19a,b,c,d)	The effect of the working temperature on	95
	(a) the half line width (b) the integral X-	
	ray intensities I (c)the lattice parameter a	
	for Al-1wt%Ag alloy.	

List of Equations

Eq. No	Equation	Page
(1.1)	$\sigma_{y} = \sigma_{0} + K\ell^{-1/2}$	10
(1.2)	$\varepsilon_0 = K_0 \exp(-Q/RT) \sigma^n$	12
(1.3)	$D=D_0 \exp(-Q/RT)$	13
(1.4)	$\epsilon_{tr} = \alpha Int + C$	13
(1.5)	$\varepsilon_{tr} = \beta t^n$	13
(1.6)	$\varepsilon_{\rm tr}$ = (gNRT/A) In ν t	14
(1.7)	$\varepsilon_{tr} = v N b A exp [\Delta H(\sigma) / R T]$	14
(1.8)	ε_{tr} = A exp - [Q -V (σ - σ_i)] / RT	15
(1.9)	$\varepsilon_{tr} = \alpha N A b v = \alpha N_s A b v / 4d$	16
(1.10)	d = $(1/2)$ b/n $(\pi G / 2 \tau)^{1/2}$	16
(1.11)	$\varepsilon_s = A^n \sinh \alpha \sigma$	16

(1.12)	$\varepsilon_s = A \sigma^n$	16
(1.13)	ε' _s =A' exp (β σ)	17
(1.14)	$\varepsilon'_s = A'' (\sinh \alpha \sigma)^n$	17
(1.15)	$\varepsilon_s' = K(2\ell_m^2 + \ell^3) / \ell$	17
(1.16)	$\varepsilon_s = A_n(D.b^3 \sigma/d^2. KT)$	18
(1.17)	$\varepsilon_s = 3\sigma D_s b^3 / (2d^2 KT)$	20
(1.18)	$\varepsilon_s^{-1} = 6\sigma^4 D_s \lambda^2 / d G^3 k T$	20
(2.1)	n λ=2d _{h k l} sin θ _{h k l}	47
(2.2)	d=a / √(h²+k²+l²)	47
(3.1)	$\varepsilon_{tr}^{\cdot} = \varepsilon - \varepsilon_0 = \beta t^n$	52
(3.2)	In β = (In t_2 In ϵ'_{tr1} -In t_1 In ϵ'_{tr2}) /(In t_2 -In t_1)	52
(3.3)	$\beta = \beta_0 (\epsilon_{st})^{\gamma}$	56
(3.4)	$\varepsilon_{tr}^{-}=\varepsilon_{o}+t^{n}\exp\left(-Q_{tr}/KT\right)$	64