

شبكة المعلومات الجامعية

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأفلام قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأفلام بعيدا عن الغبار المنافلام بعيدا عن الغبار %٤٠-٢٠ مئوية ورطوية نسبية من ٢٠-١٠ في درجة حرارة من ٢٥-١٥ مئوية ورطوية نسبية من ٢٥-١٥ to be Kept away from Dust in Dry Cool place of 15-25- c and relative humidity 20-40%

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

بعض الوثائق الاصلبة تالفة

Ain Shams University Faculty of Engineering

THE INFLUENCE OF PARTICLE TYPE IN THE ALUMINIUM COMPOSITE MMC / PRODUCED BY CENTRIFUGAL CASTING

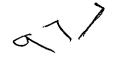
A Thesis

Submitted in partial fulfilment of the requirements for the Degree of M. Sc. in Mechanical Engineering

BY

HALA ABDEL-HAKIM ABDEL-HADY

B. Sc. Mechanical Engineering 1992


SUPERVISED BY

Prof.Dr. M. A. Taha
Ain Shams University

Prof.Dr. M. H. Abdel-Latif
Ain Shams University

Prof.Dr. N. A. El-Mahallawy
Ain Shams University

1996

STATEMENT

This dissertation is submitted to Ain Shams University for the degree of Master of Science in Mechanical Engineering.

The work included in this thesis was carried out by the author in Laboratories of Design and Production Engineering Department, Ain Shams University.

No part of this thesis has been submitted for a degree or a qualification at any other University or Institution.

Date : June, 1996

Signature: Hate

Name : Hala Abdel-Hakim

Examiners Committee

Name, Title and Affiliation

Signature

1- Prof. Dr. : Ahmed S. El Sabbagh Com

Professor of Production Engineering, Design and Production Engineering Department, Faculty of Engineering, Ain Shams University.

2 - Dr. Eng.: Nabil El-Hussieny Awad

ron Foundries

bdel Latif
n Engineering,

Chairman of Helwan Iron Foundries

3- Prof. Dr.: M. H. Abdel Latif

Professor of Production Engineering, Design and Production Engineering Department, Faculty of Engineering, Ain Shams University.

4- Prof. Dr. : N. A. El-Mahallawy

Professor of Production Engineering, Design and Production Engineering Department, Faculty of Engineering, Ain Shams University. عم الحدن

Date: 13 / 6 / 1996

ACKNOWLEDGMENT

First of all the author thanks GOD who helped him greatly in this work.

I would like to express my deep thanks to *Prof. Dr.M.A. Taha*, *Prof. Dr.M.H. Abdel-Latif*, and *Prof. Dr.N.A. El-Mahallawy*, for their sincere supervision, encouragement and unlimited help.

I wish to express my thanks to *Dr. Adel El-Shabasy*. I wish also to express my thanks to *Dr. N. Abdel-Salam* and Dr. *Talaat El-Benawy*.

I would like to say thank you to every technician of the casting and metallurgy Lab. for their valuable help.

I would like to say thank you to my family

SUMMARY

The importance of metal matrix composites (MMCs) has increased, because of their superior mechanical and physical properties and ease of fabrication. In case of particulate metal matrix composites an increase in fracture toughness and related properties can be achieved. This type of composites can be economically fabricated.

In recent years, various processes of liquid metal infiltration techniques such as vacuum infiltration, pressure infiltration, squeeze casting have been applied to produce fiber or particle reinforced composites. In these techniques the reinforcements were in the shape of preforms. It was found that preforms have limitations in their use and their volume fraction. Some techniques based on liquid state causes flotation, settling, segregation of particles and a thick interfacial reaction layer between particles and matrix.

In this work, an experimental technique previously developed was used to produce PMMC by the centrifugal casting process. This was applied to three systems (Al 12Si 2Mg / Al₂O₃,/ Graphite and / Feldspar) with different particle densities 2.6, 2 and 3.2 gm/cm³. An aluminium alloy rod with a certain length is inserted in a steel capsule on the top of a predetermined amount of loose particles. The steel capsule was inserted in an insulated tube and all the system is heated to the required superheat. After heating the system, the insulated tube containing the steel capsule is mounted on the horizontal shaft to rotate with the required rotational speed. Some process and composite variables were changed, such as melt superheat, rotational speed, radius of rotation and particle size.

Generally, uniform particle distribution in the produced composite was obtained particularly in case of alumina particles. The highest volume fraction of particles occurred in case of composites with feldspar particles. The volume fraction of particles depended on the particle size and infiltration pressure. The higher superheat combined with high powder preheating temperature, coarser

particles with regular shape and higher centrifugal forces were required to achieve full infiltration.

By increasing the melt superheat, infiltration pressure and particle size, the microporosity (pores) nearly disappeared and highest relative density was obtained. The relative density was affected by particle size and density. Zero voids volume fraction and void size were obtained at the far end of the composite rod. Sharp interfaces with no reaction layers and good wetting were obtained in case of the three systems used in this work the infiltration mechanism was greatly influenced by the particle type (particle density related to the matrix density).

List of Contents

·	Page
ACKNOWLEDGEMENT	
SUMMARY	j
CONTENTS	iii
NOMENCLATURE	xiii
LIST OF TABLES	xiv
LIST OF PLATES	xvi
LIST OF FIGURES	xix
INTRODUCTION	1 .
CHAPTER (1) Literature Survey	•
1.1 INTRODUCTION:	3
1.1.1 Constituents of Composite Materials	3
1.1.1.1 Matrix	4
1.1.1.2 Reinforcement	4
1.1.1.2.1. Fibers	4
1.1.1.2.2 Whisker	6
1.1.1.2.3 Flake	6
1.1.1.2.4 Particles	6
1.2 PROCESSING OF METAL MATRIX PARTIC	CULATE
COMPOSITE	6
1.2.1. Dispersion Processes	8
1.2.2. Liquid Metal Infiltration	8
1.2.2.1. Squeeze Casting	8
1.2.2.2. Pressure Infiltration	9
1.2.2.3. Centrifugal Casting	9
1.2.3. Spray Process:	12
1.2.3.1. Ospery Process	12

1.2.3.2. Rapid Solidification	12
1.2.3.3. In Situ Production of Dispersoids	15
1.3. MICROSTRUCTURE FEATURES AND	
DEFECTS	15
1.3.1.Porosity	15
1.3.2 Segregation	16
1.4. INTERFACIAL REACTIONS :	16
1.4.1. Types of Interface	16
1.5.TECHNIQUES TO IMPROVE WETTABITITY	22
1.5.1 Metal Coating	22
1.5.2. Addition of Elements in the Liquid Metal	22
1.5.3 Heat Treatment of Ceramic Particles	23
1.5.4 Use of Ultrasonics	23
1.6. PLAN OF WORK	23
CHAPTER (2) :EXPERIMENTAL WORK	25
2.1. MATERIALS	25
2.1.1. Metallic Matrix	25
2.1.2. Particles	25
2.2 SET-UP	28
2.2.1 Metallic Mould	28
2.2.2 Rotating Container	33
2.2.3. Electrical Furnace	33
2.3 PLAN OF WORK	33
2.3.1 Variables	33
2.3.1.1 Process Variables	33
2.3.1.1.1 Superheat	33
2.3.1.1.2 Centrifugal Force	34
2.3.1.1.2.1 Rotational Speed	34
2.3.1.1.2.2. Radius of Rotation	34
2.3.1.2 Composite Variables	34
2.3.1.2.1. Particle Size	10.134

2.3.1.2.2. Ratio between Length of Powder to Len	gth of
Composite	35
2.4. Morphology and Microstructure Examination	35
2.4.1. Morphology	- 35
2.4.2. Microstructure	37
2.5. Preparation of Specimens for Metallographic	
Examination	37
CHAPTER (3): RESULTS AND DISCUSSION	39
3.1 Macroscopic Observations	39
3.1.1 The Effect of Particle Size on the Composite	
Formation	39
3.1.1.1 Alumina Composite	39
3.1.1.2 Graphite Composite	39
3.1.1.3 Feldspar Composite	40
3.1.2 The Shape of the Interface at Composite / Remaini	ng
Alloy	45
3.1.3 The Effect of Superheat on the Composite	
Formation	47
3.1.3.1 Alumina Composite	47
3.1.3.2 Graphite Composite	47
3.1.3.3 Feldspar Composite	47
3.1.4 The Effect of Changing the Length of Powder	51
3.1.4.1 Alumina Composite	51
3.1.4.2 Graphite Composite	51
3.1.4.3 Feldspar Composite	51
3.1.5 The Effect of Radius of Rotation	53
3.1.5.1 Alumina Composite	53
3.1.5.2 Graphite Composite	53
43.1.5.3 Feldspar Composite	53
\$21.6 The Effect of Rotational Speed	54

3.1.6.1 Alumina Composite	54
3.1.6.2 Graphite Composite	54
3.1.6.3 Feldspar Composite	54
3.2 Macroscopic Measurements	54
3.2.1 The Effect of the Particle Size	57
3.2.2 The Effect of the Superheat	57
3.2.3 The Effect of Changing	58
3.2.4 The Effect of Radius of Rotation	60
3.2.5 The Effect of Rotational Speed	62
3.3 Microscopic Observations and Measurements	62
3.3.1 The Effect of Particle Size and Processing	
Variables on:	63
3.3.1.1 The Structure of the Interface	63
3.3.1.2 The Type of Phases Present in the Matrix	63
3.3.1.2.1 The Eutectic Phase in the Matrix	63
3.3.1.2.2 Primary Aluminium Phase	69
3.3.1.2.3 Aluminium Phase Rich in Iron	69
3.3.1.3 Voids	69
3.3.1.3.1. The Effect of Particle Size	79
3.3.1.3.2. The Effect of Superheat	81
3.3.1.3.3.The Effect of Changing the Length of Powder:	89
3.3.1.3.4.The Effect of Radius of Rotation	89
3.3.1.3.5. The Effect of The Rotational Speed	94
3.3.1.4 The Particle Distribution	94
3.3.1.4.1. The Effect of Particle Size	94
3.3.1.4.2. The Effect of Superheat	105
3.3.1.4.3. The Effect of Changing the Length of Powder	114
3.3.1.4.4. The Effect of Radius of Rotation	114
3.3.1.4.5. The Effect of Rotational Speed	114
3.4. Interface Quality	123

4.1 The Effect of Particle Size on the Soundness of	the
Composites	128
4.1.1 (Al 12Si 2Mg / Al ₂ O ₃) Composite	128
4.1.2 (Al 12Si 2Mg / Graphite) Composite	129
4.1.3 (Al 12Si 2Mg / Feldspar) Composite	130
4.1.4 Comparison between the Behaviour of Diffe	rent
Composites	130
4.2 The Effect of Superheat on the Soundness of the	
Composite	135
4.2.1 (Al 12Si 2Mg / Al ₂ O ₃) Composite	135
4.2.2 (Al 12Si 2Mg / Graphite) Composite	135
4.2.3 (Al 12Si 2Mg / Feldspar) Composite	136
4.2.4 Comparison between the Behaviour of Diffe	rent
Composites	142
4.3 The Effect of Pressure of Infiltration on the	
Soundness	142
4.3.1 (Al 12Si 2Mg / Al ₂ O ₃) Composites	· 142
4.3.2 (Al 12Si 2Mg / Graphite) Composites	143
4.4 The Effect of Particle Density ($ ho_{ m p}$) on The Sound	lness of
The Composite Produced	143
Chapter (5) Conclusion	148
REFERENCES	150
APPENDICES	
ARABIC SUMMARY	•