Tumor necrosis factor alpha (TNF-) as a predictor of microangiopathy in patients with type I diabetes mellitus

Thesis

Submitted for partial fulfillment of Master Degree in Pediatrics **By**

Alaa El-Shafay Ali Ghoneem

 \mathcal{M} . \mathcal{B} ., \mathcal{B} . Ch.

Supervised by

Assist.Prof. Dr. Nagham M Samy El-Beblawy

Assistant professor of pediatrics Faculty of Medicine-Ain Shams University

Dr. Ahmed Al-Saiid Hamed

Lecturer of pediatrics
Faculty of Medicine-Ain Shams University

Dr. Amal Ahamed Abase

Lecturer of Clinical pathology Faculty of Medicine-Ain Shams University

> Faculty of Medicine Ain Shams University

Introduction:

Diabetes Mellitus:-is a syndrome of disturbed energy homeostasis caused by deficiency of insulin or of its action and resulting in abnormal metabolism of carbohydrate, protein and fat. Diabetes is characterized by long-term complications including nephropathy, retinopathy and neuropathy, all of which are closely related to vascular damage.

(Martinez, et al.,

Well controlled diabetes prevents the occurrence of microvascular complications. (*DCCT research group*,

Microangiopathy is widely considered a chronic inflammatory disease and Diabetes Mellitus is an important risk factor for occurrence. Inflammatory activity in individuals with Type I Diabetes Mellitus may be due to hyperglycemia and formation of glycation end product.

(Stamler et al.,

Progressive vascular disease is characteristic of Diabetes Mellitus. Microvascular complications of Diabetes Mellitus have complex pathogenesis involving dysfunction and damage to vascular endothelial cells. Vascular endothelial cells are sensitive to stimulatory factors such as hyperglycemia, oxidative stress and advanced glycation endproduct. Association between inflammatory activity and endothelial dysfunction thought to play important role to develop Microvacular complications of Type I Diabetes Mellitus. (Sernau T et al.,

It is well known that type I Diabetes Mellitus is a T-cell dependant autoimmune disease result in selective destruction of beta cell of Largerhans with subsequent programmed cell death i.e. Apoptosis. Tumor necrosis factor-alpha (TNF-) is involved in apoptotic pathways that are implicated in beta cell destruction. (*Ratter et al.*.

The Aim of the Work :-

To estimate tumor necrosis factor-alpha (TNF-) in type I diabetes mellitus patients with and without microvacuolar complications and to evaluate if it has any relation to glycemic control .

Methods:-

Fifty () type I diabetic patients and twenty –five () healthy individuals as controls .

The participant will be divided into groups:

- **Group**: healthy individuals of comparable age and sex as control group
- **-** *Group* : patients with type I Diabetes Mellitus with duration of disease less than years
- *Group* : patients with type |I Diabetes Mellitus with duration of disease more than years

All patients and controls will be subjected to laying stress on duration of Diabetes, history of any symptoms suggestive of complication, method of intake of insulin and full clinical examination including BP and fundus examination will be done.

And the following parameters will be evaluated:

- lipid profile including TG, cholesterol , HDL&LDL
- glycosylated Hemoglobin.
- Serum creatinine & BUN
- Micro Albuminuria
- Plasma Tumor necrosis factor alfa by ELISA.

References

pł dy	ed F, Goldstein BJ. Effect of tumor necrosis factor-alpha on the nosphorylation of tyrosine kinase receptors is associated with ynamic alteration in specific protein-tyrosine phosphates. Journal E cell biology, , ():
qı	ensen CK, Orskov C. Rapid Screen-ning radioimmunoassay for antification of pathological microalbuminuria. Diabetes ephropathy, , :
ne	y GB et al. DNA fragmentation and cytotoxicity caused by tumor ecrosis factor is enhanced by interferon-gamma. European journal fimmunology, , :
су	F et al. Modulation of tumor necrosis factor-alpha-mediated atotoxicity by changes of the cellular methylation state: echanism and in vivo relevance. International immunology, ():
m in	<i>te, et al.</i> Cytotoxic activity of tumor necrosis factor-alpha is ediated by early damage of mitochondrial functions. Evidence for volvement of mitochondrial radical generation. Journal of ological chemistry, , :
	er JS, Slivka A. Biological chemistry in thiols in the vasculature and in vascular-related disease. Nutrition reviews, , :
L	nmen D et al. inhibition of caspases increases the sensitivity of cell to necrosis mediated by TNF. Journal of experimental edicine, , :

Acknowledgement

Thanks to **ALLAH** who have lightened my way to become a humble student of a noble profession and granted me the ability to accomplish this work.

Words can never express my appreciation to. Assist.Prof. Dr. Nagham M Samy El-Beblawy, assistant Professor of Pediatrics, Ain-Shams University, for her generous advise, continuous encouragement and faithfully guidance.

My deepest thanks and sincerest gratitude to **Dr. Ahmed**Al-Saiid Hamed Lecturer of pediatrics Faculty of MedicineAin Shams University. His wise supervision gave me
invaluable opportunity to benefit from her faithful guidance and
constant support.

My sincere gratitude goes to Dr. Amal Ahamed Abase, Lecturer of Clinical Pathology, Ain Shams University, for her great and sincere help, her extreme patience, careful supervision and precise advice are more than I can express.

Also, I thank our patients who permitted me to do my study, and I hope to give them benefit and improve their quality of life.

List of contents

	Page
List of abbreviations	
List of tables	
List of figures	
Introduction and aim of the work	
Review of literature	
Tumor necrosis factor	
Subject and methods	
Results	
Discussion	
Summary and conclusion	
Recommendations	
Appendix	
References	
Arabic summary	

List of abbreviations

ACE	Angiotensin converting enzyme
CAN	Cardiovascular autonomic neuropathy
DAISY	Diabetes autoimmunity study in the young
DCCT	Diabetes Control and Complications Trial
DKA	Diabetic ketoacidosis
DM	Diabetes mellitus
GAD	glutamic acid decarboxylase
GBM	Glomerular basement membrane
GFR	glomerular filtration rate
HAAF	hypoglycemia-associated autonomic failure
HbA c	glycosylated hemoglobin
HLA	Human leukocyte antigen
HPLC	high performance liquid chromatography
<i>IDF</i>	International Diabetes Federation
<i>IFG</i>	Impaired fasting glucose
<i>IGT</i>	Impaired glucose tolerance
IRS-	insulin receptor substrate-
NPDR	Non-proliferative diabetic retinopathy
PAI-	plasminogen activator inhibitor-
PDR	Proliferative diabetic retinopathy
SCII	Continuous subcutaneous insulin infusion
SMBG	Self monitoring blood glucose
STATS	signal transducers and activators of transcription
TNF-	Tumor necrosis factor alpha

VCAM-	vascular cell adhesion molecule-
VEGF	vascular endothelial growth factor
WESDR	Wisconsin Epidemiologic Study of Diabetic Retinopathy

	List of tables	Page
Table ()	Etiologic classification of diabetes	
Table ()	The incidence and prevalence rate of type diabetes mellitus in different countries	
Table ()	The American Diabetes Association guidelines for the evaluation of glucose level ()	
Table ()	Stages of diabetic nephropathy	
Table ()	Good glycemic control reduces incidence of complications	
Table ()	Comparison of human insulin and insulin analogues	
Table ()	Plasma Blood Glucose and HBA c Goals for Type Diabetes by Age Group	
Table ()	Comparison of age, sex, duration of disease and biochemical parameter between type diabetic patients with and without microvascular diabetic complication complications versus control subjects	
Table ()	Comparison between control group and all patients group	
Table ()	comparison between group A (more than years duration of disease) and group B (years duration of disease or less)	
Table ()	comparison between patients with microvascular complications and patients without microvascular complication	
Table ()	Correlation between age, duration and biochemical parameters in complicated patients.	

Table ()	Correlation between age, duration and biochemical parameters in uncomplicated patients.	
14000 ()	parameters in uncomplicated patrents.	

	List of figures	Page
Figure()	Incidence of diabetes mellitus in children aged from	
rigure()	- years worldwide	
Figure ()	Hypothetical stages and loss of beta cells in an	
Figure()	individual progressing to type A diabetes	
	Progression to diabetes of first degree relatives of	
	patients with type diabetes subdivided by the	
Figure()	number of autoantibodies expressed (of GAD ,	
	ICA , and insulin)	
	The relationship between the Grade of	
Figure()	Consciousness and plasma osmolarity (mOsm/liter,	
	calculated) in patients with diabetic ketoacidosis.	
Figure()	Hypoglycemia associated autonomic failure	
Figure()	Classification of polyneuropathy	
Figure()	Signal transduction by TNF receptors	
Figure()	Functions of cytokines in host defense	
Figure()	percentage of patients with and without	
rigure()	microvascular diabetic complications	
E:	Comparison study between patients with	
Figure()	microvascular complications and patients without microvascular complications	
	Comparison study between mean value of serum	
Figure()	TNF- in the various studied groups	
	Comparison study between mean value of HBA c	
Figure()	in the various studied groups.	

Intorduction and am of

List of contents

	Page
List of abbreviations	II
List of tables	III
List of figures	IV
Introduction and aim of the work	١
Review of literature	
 Diabetes mellitus 	٣
Tumor necrosis factor	٤ ٢
Subject and methods	٥٣
Results	٥٩
Discussion	٦٨
Summary and conclusion	٧٦
Recommendations	٧٨
Appendix	٧٩
References	٨٤

List of abbreviations

ACE	Angiotensin converting enzyme
CAN	Cardiovascular autonomic neuropathy
DAISY	Diabetes autoimmunity study in the young
DCCT	Diabetes Control and Complications Trial
DKA	Diabetic ketoacidosis
DM	Diabetes mellitus
GAD	glutamic acid decarboxylase
GBM	Glomerular basement membrane
GFR	Glomerular filtration rate
HAAF	hypoglycemia-associated autonomic failure
$HbA \ c$	glycosylated hemoglobin
HLA	Human leukocyte antigen
HPLC	high performance liquid chromatography
<i>IDF</i>	International Diabetes Federation
<i>IFG</i>	Impaired fasting glucose
IGT	Impaired glucose tolerance
IRS-1	insulin receptor substrate-\
NPDR	Non-proliferative diabetic retinopathy
PAI-	plasminogen activator inhibitor-
PDR	Proliferative diabetic retinopathy
SCII	Continuous subcutaneous insulin infusion
SMBG	Self monitoring blood glucose
STATS	signal transducers and activators of transcription
TNF-a	Tumor necrosis factor alpha
UAE	Urinary albumin excretion
VCAM-	vascular cell adhesion molecule-
VEGF	vascular endothelial growth factor
WESDR	Wisconsin Epidemiologic Study of Diabetic Retinopathy

	List of tables	Page
Table (\)	Etiologic classification of diabetes	٤
Table (*)	The incidence and prevalence rate of type \(\) diabetes mellitus in different countries	٧
Table (*)	The American Diabetes Association guidelines for the evaluation of glucose level (۲۰۰۳)	17
Table (٤)	Stages of diabetic nephropathy	7 7
Table (°)	Good glycemic control reduces incidence of complications	٣٥
Table (٦)	Comparison of human insulin and insulin analogues	٣٧
Table (Y)	Plasma Blood Glucose and HBA\c Goals for Type \ Diabetes by Age Group	٤١
Table (^)	Comparison of age, sex, duration of disease and biochemical parameter between type diabetic patients with and without microvascular diabetic complication complications versus control subjects	09
Table (٩)	Comparison between control group and all patients group	٦.
Table (\`)	comparison between group A (more than ° years duration of disease) and group B (° years duration of disease or less)	٦١
Table (۱۱)	comparison between patients with microvascular complications and patients without microvascular complication	77
Table (۱۲)	Correlation between age, duration and biochemical parameters in complicated patients.	٦٣
Table (۱۳)	Correlation between age, duration and biochemical parameters in uncomplicated patients.	٦٤

	List of figures	Page
Figure(\)	Incidence of diabetes mellitus in children aged from •- • years worldwide	٨
Figure(\(\forall \)	Hypothetical stages and loss of beta cells in an individual progressing to type \A diabetes	٩
Figure(*)	Progression to diabetes of first degree relatives of patients with type \(\) diabetes subdivided by the number of autoantibodies expressed (of GAD\(\), ICA\(\)\(\), and insulin)	1 £
Figure(\(\xi\))	The relationship between the Grade of Consciousness and plasma osmolarity (mosm/liter, calculated) in ^V patients with diabetic ketoacidosis.	19
Figure(°)	Hypoglycemia associated autonomic failure	77
Figure(\(\)	Classification of polyneuropathy	٣١
Figure(\(^{\forall}\)	Signal transduction by TNF receptors	٤٣
Figure(\(\lambda\)	Functions of cytokines in host defense	٤٦
Figure(9)	percentage of patients with and without microvascular diabetic complications	70
Figure(\``)	Comparison study between patients with microvascular complications and patients without microvascular complications	44
Figure(\\)	Comparison study between mean value of serum TNF-α in the various studied groups	77
Figure(\ \ \)	Comparison study between mean value of HBA\c in the various studied groups.	٦٧

Introduction

Diabetes Mellitus:-is a syndrome of disturbed energy homeostasis caused by deficiency of insulin or of its action and resulting in abnormal metabolism of carbohydrate, protein and fat. Diabetes is characterized by long-term complications including nephropathy, retinopathy and neuropathy, all of which are closely related to vascular damage (Martinez, et al., 1997).

Well controlled diabetes prevents the occurrence of microvascular complications (*DCCT research group*, \qq \qq \).

Microangiopathy is widely considered as a chronic inflammatory disease and Diabetes Mellitus is an important risk factor for occurrence. Inflammatory activity in individuals with Type I Diabetes Mellitus may be due to hyperglycemia and formation of glycation end product. (Stamler et al., 1997).

Progressive vascular disease is characteristic of Diabetes Mellitus. Microvascular complications of Diabetes Mellitus have complex pathogenesis involving dysfunction and damage to vascular endothelial cells. Vascular endothelial cells are sensitive to stimulatory factors such as hyperglycemia, oxidative stress and advanced glycation endproduct .Association between inflammatory activity and endothelial dysfunction thought to play important role to develop Microvacular complications of Type I Diabetes Mellitus (*Sernau T et al.*, 1996).