Immunohistochemical study of angiogenesis In prostatic adenocarcinoma and its precursors

Thesis submitted for partial fulfillment of M.Sc in Pathology

Amany Mamdouh Abbass Abd Elaziz (M. B., B. Ch.)

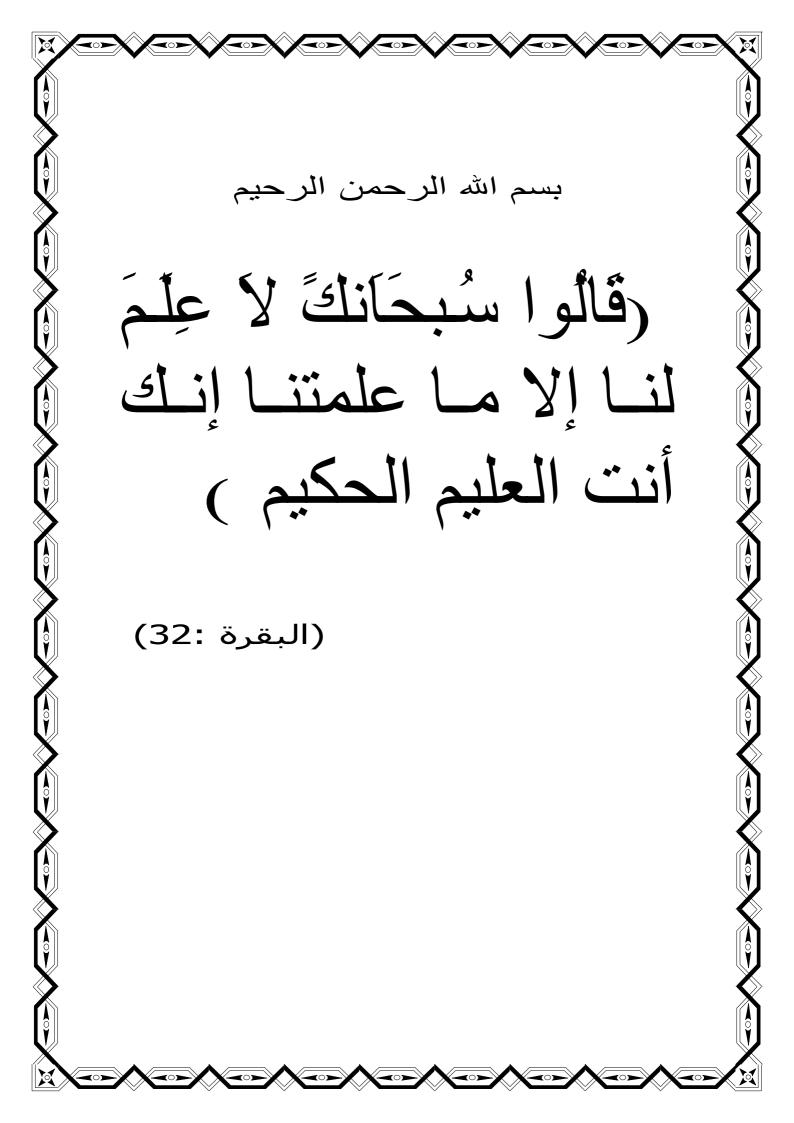
Supervisors

PROF. DR. FAHIMA MOHAMMED HABIB

Professor of Pathology Faculty of Medicine Cairo University

PROF.DR.SAMIA IBRAHIM EL -NAGGAR

Assistant Professor of Pathology Faculty of Medicine Bani Swief University


DR.HALA NAGUIB HOSNI

Lecturer of Pathology Faculty of Medicine Cairo University

Cairo University

Faculty of Medicine

2008

Abstract:

Background: Prostate cancer(Pca) is considered to be one of most common cancers in males .Prostatic intraepithelial neoplasia (PIN) and Atypical adenomatous hyperplasia (AAH), were assumed to be precursors of prostatic adenocarcinoma. Angiogenesis facilitates progressive tumour growth by providing adequate oxygenation to the tumour.Microvessel density (MVD) is considered to be a marker of the neo-angiogenetic process ,which can be assessed on pathological slides through the evaluation of immunoreactivity to some endothelial antigens, eg.CD34.

Materials &methods: The present study done on a total 35 cases of Pca(25 cases), and AAH(5 cases), (PIN) (5 cases). Also 10 cases of benign prostatic hyperplasia (BPH) used for comparison. MVD was highlighted by using CD34 immunohistochemical stain. Individual microvessels were then counted at x200 magnification, MVD was correlated with age, serum PSA and Gleason score.

Results: Most of(60%) AAH,PIN cases showed MVD(25-50),most of (68%)Pca cases showed MVD(>50).MVD showed non significant correlation with age in AAH,PIN &Pca cases ,but showed significant correlation with serum PSA level in AAH,PIN (P value <0.05) &Pca cases (P value < 0.01),also MVD showed significant correlation with Gleason score in Pca cases (P value<0.05).

Conclusion: CD34 immunostaining is a reliable method for counting the microvesseles in tumors. The microvascular density together with the Gleason's grading evaluates successfully the aggressiveness and prgnosis of prostatic carcinoma.

KEY WORDS: CD34- prostatic adenocarcinoma- microvascular density-premalignant prostatic lesions.

Acknowledgement

First and foremost "Thanks to GOD", the most beneficient and merciful.

I would like to express my appreciation, deepest gratitude and enoromous thanks to **Prof. Dr. Fahima Mohammed Habib.** Professor of Pathology, Faculty of Medicine, Cairo University. Because of her unlimited support, helpful spirit and her own scientific experience, which she devoted to me todo my thesis successfully, my thanks to her are endless and so warm.

I would like to express my sincere and great gratitude to **Prof.Dr.Samia Ibrahim El-Naggar.** Assistant professor of Pathology, Faculty of Medicine, Bani swief university. For her continous support, valuable advices and greatest help.

I am very much indebted to **Dr.Hala Naguib Hosni** Lecturer of Pathology ,Faculty of Medicine ,Cairo University for her step by step supervision throughout this work,her constructive criticism and her sincere efforts.

I extend my deepest thanks to all my professors and all my colleagues in Pathology department ,Faculty of Medicine ,Cairo University and Bani swief university,for their cotinous encouragement and support.

I am exteremly grateful to my family for their kindness, toleration, devotion and motivation, without their support and helpfulness, this work would never have come to light.

Contents

	page
I-Introuduction	1
II- Objectives	3
III-Review of literature	4
° Anatomy and development of the prostate	4
° Premalignant prostatic lesions	8
°WHO classification of prostatic carcinoma	24
°prostatic adenocarcinoma	26
°Angiogensis	41
°CD34 antibody	56
° angiogensis in prostatic adenocarcinoma	59
IV- Materials and methods	64
V- Results	70
VI- Discussion	104
VII-Summary	109
VIII-Conclusions and Recommendation	111
IX-References	112
X-Arabic summary	

List of Tables

Table No.	Title	Page
Table (1)	Grading of PIN	13
Table (2)	Diagnostic criteria of PIN	14
Table (3)	Age distribution for clinical prostate cancer detection	27
Table (4)	Age distribution in cases of AAH	70
Table (5)	Distribution of serum PSA level in cases of AAH	71
Table (6)	Comparison between distribution of Microvascular density (MVD) in BPH cases and in AAH cases	72
Table (7)	Correlation of MVD to age groups in AAH cases	73
Table (8)	Correlation of MVD to serum PSA level in AAH cases	74
Table (9)	Age distribution in cases of PIN	75
Table (10)	Distribution of histopathologic grading of PIN cases	76
Table (11)	Distribution of serum PSA level in cases of PIN	77
Table (12)	Comparison between distribution of Microvascular density (MVD) in BPH cases and in PIN cases	78
Table (13)	Correlation of MVD to age groups in PIN cases	79
Table (14)	Correlation of MVD to serum PSA level in PIN cases	80
Table (15)	Age distribution in cases of prostatic adenocarcinoma	81
Table (16)	Distribution of prostatic adenocarcinoma cases according to Gleason's score detected on histopathological examination	82
Table (17)	Distribution of serum PSA level in cases of prostatic adenocarcinoma	83
Table (18)	Comparison between distribution of Microvascular density (MVD) in BPH cases and in prostatic adenocarcinoma cases	84
Table (19)	Correlation of MVD to age groups in prostatic adenocarcinoma cases	85
Table (20)	Correlation of MVD to serum PSA level in prostatic adenocarcinoma cases	86
Table (21)	Correlation of MVD to Gleason grade in studied prostatic adenocarcinoma cases	87

List of figures

Number	Title	page
1	Age distribution in cases of atypical adenomatus hyperplasia(AAH)	70
2	Correlation of MVD to age groups in AAH cases	73
3	Correlation of MVD to PSA level in AAH cases	74
4	Correlation of MVD to age groups in PIN cases	79
5	Correlation of MVD to PSA level in PIN cases	80
6	Age distribution in cases of prostatic adenocarcinoma	81
7	Number of prostatic adenocarcinoma cases according to Gleason's score detected on histopathological examination	82
8	Distribution of Microvascular density (MVD) in cases of prostatic adenocarcinoma	84
9	Correlation of MVD to age groups in prostatic adenocarcinoma cases	85
10	Correlation of MVD to PSA level in prostatic adenocarcinoma cases	86

11	Correlation of MVD to Gleason grade in prostatic adenocarcinoma cases	87
12	Atypical adenomatous hyperplasia (AAH) ,showing closely packed glands, stratification & crowdening of cells,cells have enlarged nuclei with inconspicuous nucleoli (H&E) x 200	88
13	High power of previous picture (H&E) x 400	88
14	Low grade prostatic intra-epithelial neoplasia(PIN), showing stratification, crowdening of cells (H&E) x 200	89
15	High power of previous picture showing variability in size& shape of nuclei (H&E) x 400	89
16	High grade (PIN) show marked stratification and marked atypia (H&E) x 200	90
17	High power of previous picture (H&E) x 200	90
18	High grade (PIN), with tufting pattern (arrow) (H&E) x 200	91
19	High power of previous picture showing marked nuclear atypia (H&E) x 400	91
20	High grade (PIN), with micro –	92

	papillary pattern (arrow) (H&E) X 200	
21	High power of previous picture ,showing nuclear atypia (H&E) x 400	92
22	prostatic adenocarcinoma Gleason's grade (2+2) (H&E) x 200	93
23) High power of previous picture, showing variable sized infiltrating malignant glands(arrow) (H&E) x 400	93
24	prostatic adenocarcinoma Gleason's grade (3+4) showing bizarre glands (arrow) (H&E) x 200	94
25) High power of previous picture, showing atypia (H&E)X 400	94
26	prostatic adenocarcinoma Gleason's grade (4+3) (H&E) X200	95
27	High power of previous picture, showing masses & cords of variable sized malignant cells (arrow) (H& E) X 400	95
28) prostatic adenocarcinoma Gleason's grade (5+5) with small cell differentiation showing nests & ribbons of malignant cells (H&E) x200	96

29	High power of previous picture showing pleomorphic cells with scanty cytoplasm & hyperchromatic nuclei (arrow) (H&E) x 400	96
30	BPH with corpora amylacea, showing low grade MVD (<25) expressed by (CD34) immunohistochemistry x200	97
31	BPH, showing low grade MVD (<25), with periglandular distribution of blood vessels. expressed by (CD34) immunohistochemistry x 200	97
32	Atypical adenomatous hyperplasia (AAH) showing moderate grade of MVD (25-50) expressed by (CD34) immunohistochemistry x 200	98
33	High power of previous picture showing a brown stained blood vessel (arrow) expressed by (CD34) immunohistochemistry x 400	98
34	Atypical adenomatous hyperplasia (AAH) showing moderate grade of MVD(25-50) expressed by (CD34) immunohistochemistry x 200	99

35) Low grade (PIN), showing moderate grade MVD(25-50), expressed by (CD34) immunohistochemistry x 200	100
36	Low grade (PIN), showing low grade 25) <mvd((cd34)="" 400<="" by="" expressed="" immunohistochemistry="" td="" x=""><td>100</td></mvd(>	100
37	High grade (PIN), with tufting, showing high grade MVD (>50) with deeply stained blood vessels around it expressed by (CD34) immunohistochemistry x 200	101
38	High power of previous picture showing a deeply stained blood vessel (arrow) expressed by (CD34) immunohistochemistry x 400	101
39	High grade (PIN) with micro papillary pattern showing a stained blood vessel at the core (arrow) expressed by (CD34) immunohistochemistry x 400	102
40	prostatic adenocarcinoma Gleason's grade (2+2) showing high grade MVD (>50), with randomly and stromal distributed blood vessels. expressed by (CD34) immunohistochemistry x 200	102
41	prostatic adenocarcinoma Gleason's	103

	grade(3+3) showing low grade MVD 25) expressed by< (CD34)immunohistochemistry x 400	
42	prostatic adenocarcinoma Gleason's	103
	grade (5+5) with small cell	
	differentiation showing high grade	
	MVD(>50) expressed by (CD34)	
	immunohistochemistry	

<u>List of Abbreviations</u>

AAH Atypical adenomatous hyperplasia

aFGF Acidic fibroblast growth factor

BPH Benign prostatic hyperplasia

BCH Basal cell hyperplasia

bFGF Basic fibroblast growth factor

CEPs Circulating endothelial progenitor cells

DAG Diacylglycerol

ECM Extracellular matrix

EGF Epidermal growth factor

HGF Hepatocyte growth factor

HGPIN High grade Prostatic intra-epithelial neoplasia

IL Interleukin

IP3 Inositol 1,4,5-triphosphate

MECIF Macrophage endothelial-cell inhibitory factor

MAP Mitogen-activated protein

MVD Micro-vessel density

MVC Micro-vessel count

MMPs Matrix metalloproteinases

PD-ECGF Platelet derived endothelial cell growth factor

PlGF Placenta growth factor

PLC-γ Phospholipase C-γ

Pl3K Phosphotidylinositol 3-kinase

PIN Prostatic intra-epithelial neoplasia

Pca Prostatic carcinoma

PAs Plasminogen activators

TRUS Transrectal ultrasound-guided needle biopsies

TUR Trans-urethral resection

TNF-α Tumor necrosis factor alpha

TSP-1 Thrombospondin- 1

TIMPs Tissue inhibitors of metalloproteinases

TGF Transforming growth factor

WHO World Health Organization

VEGF Vascular endothelial growth factor

VHL Von Hippel-Lindau tumor

Introduction

Prostatic carcinoma (Pc) is the most frequent malignant tumor among men over 50 years old (Cancel-Tassin and Cussenot .,2005).

Prostate cancer is the second most common cause of cancer related deaths in the men in United States, accounting for 29,000 deaths annually (Vogelzang et al., 2005).

Tumor angiogenesis, also termed neovascularization, provides a critical component for the growth, invasion and metastasis of solid tumors including prostatic adenocarcinoma (Terrence et al., 2005).

When a new tumor reaches the size of 1-2 mm, its growth requires the induction of new blood vessels, which may consequently lead to the development of metastases, via the penetration of malignant cells into the circulation (Uzzan et al., 2004).

Angiogenesis promots growth because the new vessels allow exchange of nutrients, oxygen, and waste products. In addition, the endothelial cells may release important paracrine growth factors for tumor cells (Belldegrun et al., 2000).

The common pathologic approach to asses angiogenesis involve microscopic estimation of vascular density or microvascular density in tissue proved by endothelial markers in immunohistochemistry (Choi et al., 2005).

Several markers of blood vessels endothelium have been developed for routine use including CD31, CD34 and factor VIII related antigen (Uzzan et al., 2004).