Plasma Brain Derived Neurotrophic Factor (BDNF) Level of Full Term Newborns With Perinatal Hypoxia

Thesis submitted for partial fulfillment of Master degree in Pediatrics By

Mahmoud Ahmed Shawky Yousef

 $\mathcal{M}.\mathcal{B}.\mathcal{B}.\mathcal{C}h$, $\forall \dots \forall$

Under supervision of

Professor Dr.Safaa Shafik Emam

Assistant Professor of Pediatrics. Faculty of medicine, Ain Shams university

Dr.Ghada Ibrahim Gad

Lecturer of Pediatrics.

Faculty of medicine, Ain Shams university

Dr.Shereen Hassan Atef

Lecturer of Clinical pathology. Faculty of medicine, Ain Shams university

> Faculty of medicine, Ain Shams university,

Y . . A

Acknowledgment

First of all, thanks to *Allah* the most merciful for guiding me through and giving me strength to complete this work the way it is.

It is a pleasure to express my deepest thanks and profound respect to my honored professor, *Professor Dr. Safaa Shafik Emam*, professor of pediatrics, Faculty of Medicine, Ain Shams University, for her continuous encouragement and valuable supervision and guidance throughout this work. It has been an honor and a privilege to work under her generous supervision.

Also, I wish to express my deep gratitude to *Dr. Ghada Ibrahim Gad*, lecturer of pediatrics, Faculty of Medicine, Ain Shams University, for her kind support, help, careful supervision and her continuous guidance.

I am also deeply grateful and would like to express my sincere thanks and gratitude to *Dr. Shereen Hassan Atief*, lecturer of clinical and chemical pathology, Faculty of Medicine, Ain Shams University, for her great help and support.

No words could adequately express my deep appreciation to my family, especially my parents, my brothers and my wife for their continuous support and guidance. I shall remain indebted to them all my life.

Special thanks to my patients, wishing them a happy and healthy life.

LIST OF CONTENTS

List of Abbreviations	(I)
List of Tables	(IV)
List of Figures	(VI)
Introduction and Aim of the Work	(VIII)
Review of Literature	
 Perinatal asphyxia Neurotrophins	
Subjects and Methods	(<i>YT</i>)
Results	(<i>^</i> .)
Discussion	(٩٨)
Summary	(1.0)
Conclusion	(1 · 1)
Recommendations	(11.)
References	(111)
Arabic Summary	

List of abbreviations, tables & figures

List of abbreviations

AAP	American academy of pediatrics
AMP	Adenosine monophosphate
ADP	Adenosine diphosphate
α-EEG	Amplitude-integrated Electroencephalography
AKT	Serine therionine protein kinase
ATP	Adenosine triphosphate
BAEPs	Brainstem auditory evoked potentials
BDNF	Brain derived neurotrophic factor
BP	Blood pressure
BUN	Blood urea nitrogen
CA+ Y	Calcium
cAMP	Cyclic AMP
cGMP	Cyclic guanosine monophosphate
CK-MB	Creatine kinase myocardial bound
CNS	Central nervous system
CNTF	Ciliary neurotrophic factor
CO r	Carbon dioxide
СР	Cerebral palsy
CPP	Cerebral perfusion pressure
CPR	Cardiopulmonary resuscitation
Cr	Creatinine
CSF	Cerebrospinal fluid
CT	Computed tomography
CT-1	Cardiotrophin - 1
cTnI	Cardiac troponin I
cTnT	Cardiac troponin T
CRE	cAMP response element
CREB	cAMP response element binding protien
DIC	Disseminated intravascular coagulation
DNA	Deoxy ribonucleic acid
DRG	Dorsal root ganglion
DWI	Diffusion weighted image
EEG	Electroencephalograph
ERK	Ras/extracellular signal regulated kinase
FE	Fractional excretion

GABA	γ-aminobutyric acid
GDNF	Glial cell derived neurotrophic factor
GFP	Green fluorescent protien
GIT	Gastrointestinal tract
GLU	Glutamate
GM	Monosialogangliosides
<i>H</i> +	Hydrogen ion
HIE	Hypoxic ischemic encephalopathy
HGF	Hepatocyte growth factor
ICH	Intracranial hemorrhage
ICP	Intracranial pressure
Ig	immunoglobulin
IL-7	Interleukin - 7
IP "	Inositol tri-phosphate
<i>IPSCs</i>	Inhibitory postsynaptic currents
IVHge	Intraventricular hemorrhage
KA-AMPA	Kainite-a-amino-r-hydroxy-o-methyl-\(\xi\)-isoxazole-propionic
KA-AMFA	acid
LIF	Leukaemia inhibitory factor
LTD	Long term depression
LTP	Long term potentiation
MAPK	Mitogen activated protein kinase
MeCP [†]	Methyl CpG-binding protein Y
MEK	MAPK/ERK kinase
MOD	Multiorgan dysfunction
MRI	Magnetic resonance imaging
mRNA	Messenger ribonucleic acid
MRS	Magnetic resonance spectroscopy
MSP	Macrophage stimulating protien
NAA	N-acetyl aspartate
NE	Neonatal encephalopathy
NEC	Necrotizing enterocolitis
NGF	Nerve growth factor
NMDA	N-methyl-D-aspartate receptor
NO NO	Nitric oxide
NSE	Neuron specific enolase
NT "	Neurotrophin "
0 *	Oxygen

OSM	Oncostatin-M
PCO 7	Partial pressure of carbon dioxide
PET	Positron emission tomography
PKC	Protein kinase C
PLC	Phospholipase C
PMR	Phosphorus magnetic resonance
P V ONTR	Low affinity neurotrophin receptor
PO Y	Partial pressure of oxygen
PSD 40	Postsynaptic marker
PVL	Periventricular leukomalacia
Raf	MAP kinase kinase kinase
Ras	GTP-binding protien
RGCs	Retinal ganglion cells
RI	Resistive index
Rsk	Ribosomal S 7 kinase
SD	Standard deviation
SHC	Selective head cooling
Shc	Adaptor protein with SH \(^{\text{t}}\) domain
SIADH	Syndrome of inappropriate antidiuretic hormone secretion
SOS	Son of sevenless, nucleotide exchange factor
SPECT	Single photon emission computed tomography
SSEPs	Somatosensory evoked potentials
T 1	Truncated TrKB
TGF-β	Transforming growth factor - β
TNF	Tumor necrosis factor
TrK	Tyrosin kinase
US	Ultrasonography
VDCC	Voltage dependant calcium channel
VEPs	Visual evoked potentials
VGCC	Voltage gated calcium channel
WBC	Whole body cooling

List of tables

TABLE	TITLE	PAGE
(1)	Normal blood gas values in term newborns	۲
(7)	Some factors that place the newborn infant at high risk for asphyxia	٣
(")	Tobography of brain injury in term infants with hypoxic ischemic encephalopathy and clinical correlates	9
(£)	Major means of antepartum assessment of the fetus	11
(0)	Major means of intrapartum assessment of the fetus	11
(7)	Fetal heart rate patterns	1 ٢
(4)	Apgar scoring system	1)"
(1)	Interpretation of Apgar score	1 £
(9)	Factors affecting the Apgar score	1 £
(1.)	Stages of hypoxic-ischemic encephalopathy	10
(11)	Multiorgan systemic effects of asphyxia	1 1
(17)	Factors Predictive of Adverse Neurologic Outcomes in HIE	79
(17)	Risk of death or cerebral palsy (CP) in infants with Appar scores of •- "at varying times from birth	£ 1
(12)	Families of structurally related neurotrophic factors and their receptors	20
(10)	Demographic criteria of the patients and controls	۸.
(17)	Comparative study between case & control groups as regards laboratory variables	A 1
(14)	Resuscitation measures used for cases & controls	11
(11)	Distribution of postnatal complications attributed to hypoxia among the studied cases	15
(19)	Comparative study between severe & mild to moderate HI cases (according to Sarnat staging) as regards some clinical data.	15
(٢٠)	Cranial ultra sound findings among cases	Λ£
(11)	Comparative study between mild, moderate & severe HI cases according to sarnat as regards some laboratory data	10

(7 7)	Comparative study between male & female cases as regards BDNF level at delivery & after YY hrs	17
(۲۳)	Comparative study between male and female controls as regards mean BDNF level at delivery.	11
(7 %)	Correlation between BDNF level & some variables	$\Lambda\Lambda$
(٢0)	Correlation between BDNF level and gestational age among control group.	۹.
(٢٦)	Correlation between BDNF & APGAR score	4.
(۲۷)	Relation between BDNF levels and some clinical variables among cases with perinatal hypoxia	9 1
(۲1)	Comparison between BDNF level among cases at birth and after YT hrs	9 5
(T 9)	Comparative study between cases which differ in some clinical variables as regards the change in BDNF level	9 7

١.

List of figures

FIGURE	TITLE	PAGE
(1)	Potential pathways for brain injury after hypoxia- ischemia	£
(7)	Relationships at the glutamate synapse among the presynaptic axonal terminal, the postsynaptic dendrite, and the associated astrocyte.	7
(7)	Schematic of events that may contribute to the evolution of HIE	V
()	Brain MR images of a term infant after an episode of severe near-total asphyxia	1.
(°)	Coronal and parasagittal ultrasound scans in a 1-day-old full-term infant who experienced perinatal asphyxia	۲۳
(7)	CT scans of evolution of cortical neuronal necrosis	70
(1)	Magnetic resonance spectroscopy at the left basal ganglia in a Six-day-old baby with stage II hypoxicischemic encephalopathy	rv
(1)	Amplitude-integrated electroencephalogram tracings	79
(9)	Potential therapeutic intervention strategies	yu £
(1.)	Head cooling cap	7" £
(11)	x-ray crystallographic structure of NGF alone and bound to p Y=NTR	£٨
(17)	schematic representation of the structure of the catalytic forms of TrkA,TrkB and TrkC and also the p V=NTR protein	٥,
(17)	Neurotrophin-receptor interactions	0 7
(1 =)	Schematic diagram of Trk receptor-mediated signal transduction pathways	00
(10)	Schematic diagram of p VONTR-mediated signal transduction pathways	07
(17)	Schematic illustration of the routes by which neurotrophic factors influence neuronal survival	OA
(11)	Distribution of cases according to sarnat staging	14
(11)	Distribution of cases according to the outcome	Λ£
(19)	Comparative study between mild, moderate and severe HI cases according to sarnat staging as regards mean BDNF	17

	level at delivery and after YT hrs	
(٢٠)	Comparative study between male and female HI cases as regards mean BDNF level at delivery and after VY hrs	11
(۲1)	Correlation between BDNF at delivery and Nucleated RBCs	19
(۲۲)	Correlation between BDNF at VY hrs and Nucleated RBCs	19
(۲۳)	ROC curve for prediction of poor outcome by BDNF level at delivery	9 £
(Y £)	ROC curve for prediction of poor outcome by level of BDNF at VT hrs	90
(٢0)	ROC curve for prediction of severe sarnat stage by level of BDNF at delivery	97
(۲7)	ROC curve for prediction of severe sarnat stage by level of BDNF at VT hrs of delivery	9 V

Introduction & Aim of work

<u>INTRODUCTION</u>

Hypoxic-ischemic encephalopathy (HIE) is an important cause of death and disability in full-term infants. The incidence of moderate or severe hypoxic-ischemic encephalopathy has remained essentially unchanged over the past Υ years, at Υ to Υ per Υ live births in the United States. Approximately Υ to Υ percent of these infants will die, and Υ to Υ percent of those who survive will be disabled (*Dixon et al*, Υ · · Υ).

In term neonates, 9.% of asphyxial insults occur in the antepartum or intrapartum periods as a result of placental insufficiency, resulting in an inability to provide oxygen (OY) to and remove carbon dioxide (COY) and hydrogen ion (H+) from the fetus. The remainders are postpartum, usually secondary to pulmonary, cardiovascular, or neurologic abnormalities (*Aurora & Snyder*, Y···•).

Mild encephalopathy carries a good prognosis, although in moderate and severe encephalopathy the risk of death or neurologic sequelae increases greatly (*Finer et al*, 1411).

Neuroprotective interventions are increasingly in the forefront of interest and have been shown to be effective in animal models. For clinical intervention, it is important to identify infants at a high risk for brain damage soon after birth and within the therapeutic window (*Vannucci et al*, 1994).

Neurotrophic factors play crucial roles in neuroprotection; neurotrophins promote survival and can reduce apoptosis in many populations of neurons (*Hetman et al, ''··'*). Nerve growth factor, brain derived neurotrophic factor (BDNF), and neurotrophin '(NT') are neurotrophins that act on tyrosine kinase (Trk) A, Trk B, activities, neurotrophins play important roles in axon growth during development (*Tucker et al, ''··'*), higher neuronal

functions (*Chao*, '···), morphologic differentiation, and neurotransmitter expression (*Takei et al*, 1991).

Thus, neurotrophins may play important role in antenatal and postnatal brain development (Korhonen et al, 1991).

In addition, BDNF has been demonstrated to decrease tissue loss in brain when administered after hypoxic-ischemic injury in neonatal animals (Cheng et al, 1994), (Ferrer et al, 7001).

Circulating BDNF levels correlate with cortical BDNF levels in newborn rats (*Karege et al*, $\gamma \cdot \cdot \gamma$).

Thus, questions remain concerning the presence and significance of neurotrophins during the perinatal period and especially in relation to factors that may cause neurologic insults in the developing brain. Proposed initial steps to address these questions involve analyzing neurotrophin levels in umbilical cord blood in newborns with perinatal hypoxia.

Aim of the work

The aim of the present work is To assess cord blood BDNF level in full term newborns with perinatal asphyxia, to follow up its level during reperfusion phase and to study its possible relation to the development and severity of HIE .

Review Of Literature