

USE OF DIFFERENT MODELS TO PREDICT ADULTERATION OF SOME EGYPTIAN HONEY

By

Eman Emad Mohammed Abd El-Kader Mostafa

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Chemical Engineering

USE OF DIFFERENT MODELS TO PREDICT ADULTERATION OF SOME EGYPTIAN HONEYS

By Eman Emad Mohammed Abd El-Kader Mostafa

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Chemical Engineering

Under the Supervision of

Prof. S. R. Mostafa Prof. M. A. Sorour

Chemical Engineering Department Faculty of Engineering, Cairo University

Food Engineering and Packaging
Department
Food Technology Institute, Agricultural
Research Centre

USE OF DIFFERENT MODELS TO PREDICT ADULTERATION OF SOME EGYPTIAN HONEYS

By **Eman Emad Mohammed Abd El-Kader Mostafa**

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Chemical Engineering

Approved by the Examining Committee	
Prof. Salwa R. Mostafa	Thesis Main Advisor
Prof. Manal A. Sorour Food Technology Institute, Agricult	Advisor ural Research Centre
Prof. Magdi F. Abadir	Internal Examiner
Prof. Maher G. Soliman The Higher Technological Institute	External Examiner

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2017 Engineer's Name: Eman Emad Mohammed Abd El-Kader Mostafa

Date of Birth: 30 / 10 / 1989 **Nationality:** Egyptian

E-mail: emanemad89@hotmail.com

Phone: 01008799781

Address: 12 Ibn Katheer st. from the end of Hijaz st.,

Heliopolis, Cairo, Egypt.

Registration Date: 1 / 3 / 2013 **Awarding Date:** / / 2017

Degree: Master of Science **Department:** Chemical Engineering

Supervisors:

Prof. Salwa Raafat Mostafa.

Prof. Manal Abdel Rahman Sorour

(Food Technology Institute, Agricultural Research Centre)

Examiners:

Porf. Salwa Raafat Mostafa (Thesis main advisor)
Porf. Manal Abdel Rahman Sorour (Advisor)
(Food Technology Institute, Agricultural Research Centre)

Prof. Magdi Foad Abadir (Internal examiner)
Prof. Maher Gamal El-Deen Soliman (External examiner)

(Professor at the Higher Technological Institute)

Title of Thesis:

Use of Different Models to Predict Adulteration of Selected Egyptian Honeys

Key Words:

Honey, Rheology, Adulteration, Thixotropy.

Summary:

This research elaborates the physical properties of some Egyptian honeys; samples of these honey types were adulterated with starch solution, glucose, molasses and distilled water respectively. The physical properties, rheological properties, the effect of volume of adulterant on apparent viscosity, effect of temperature on apparent viscosity, activation energy and effect of thixotropy of pure and adulterated samples were determined and compared.

Acknowledgments

Sincere gratitude and appreciation to Prof. Salwa R. Mostafa, for her supervision, guidance, valuable advice, constructive criticism and continuous help during the course of this study.

Deep appreciation should also be expressed to Prof. Manal A. Sorour, for her supervision, support, patience, continuous help, valuable suggestions and advice throughout the course of this study.

Many thanks should be extended to Prof. Magdi F. Abadir, for his help and valuable insights.

Special gratitude to the head and all staff members of Engineering Process Department, Food Technology Institute, Agricultural Research Center, for offering their laboratory and staff assistance during the completion of this work.

Dedication

To Dad, Mom and Meran with love, hope I make you proud.

Table of Contents

List of Figures	vi
List of Tables	xiii
Nomenclature	xv
Abstract	xvii
Chapter One: Introduction	1
Chapter Two: Literature Review	3
2.1. Chemical Composition of Honey	3
2.2. Seasons of Honey in Egypt	3
2.3. Uses of Honey	4
2.4. Adulteration of Honey	4
2.5. Physicochemical Properties of Honey	5
2.6. Rheological Characteristics of Food	8
2.7. Rheological Characteristics	9
2.8. Types of Fluid	9
2.8.1. Newtonian Fluid	9
2.8.2. Non-Newtonian Fluid	11
2.8.2.1. Bingham Fluid	11
2.8.2.2. Shear Thinning Fluid	13
2.8.2.3. Shear Thickening Fluid	14
2.8.2.4. Herschel-Bulkley Fluid	16
2.8.3. Time Dependent Fluid	16
2.8.3.1. Rheopectic Fluid	17
2.8.3.2. Thixotropic Fluid	18

Chapter Three: Experimentation and Methods	23
3.1. Materials	23
3.2. Methods	23
3.2.1. Preparation of Starch Solution	23
3.2.2. Preparation of Adulterated Honey Samples	23
3.3. Physical Properties Measuring Methods	24
3.3.1. Density	24
3.3.2. Refractive Index and Concentration as Total Suspended Solids (T.S.S.)	24
3.3.3. Moisture Content	25
3.3.4. pH and Electrical Conductivity	25
3.3.5. Surface Tension	26
3.3.6. Rheological Properties	26
Chapter Four: Results and Discussion	28
4.1. Physical Properties of Honey	28
4.1.1. Physical Properties of Pure, Purchased and Adulterated Black Seed Honey	28
4.1.2. Physical Properties of Pure, Purchased and Adulterated Clover Honey	31
4.1.3. Physical Properties of Pure, Purchased and Adulterated Desert Honey	33
4.1.4. Physical Properties of Pure, Purchased and Adulterated Mountain Flower Honey	35
4.2. Rheological Properties of Different Honey Types	37
4.2.1. Rheological Properties of Pure, Purchased and Adulterated Black seed Honey	38
4.2.2. Rheological Properties of Pure, Purchased and Adulterated Clover Honey	45
4.2.3. Rheological Properties of Pure, Purchased and Adulterated Desert Honey	52
4.2.4. Rheological Properties of Pure, Purchased and Adulterated Mountain Flower Honey	59
4.3. Combined Effect of Shear Rate and Volume of Adulterant on Shear Stress	66
4.4. Effect of Volume of Adulterant on Apparent Viscosity	67
4.4.1. Effect of Volume of Adulterant on Apparent Viscosity for Black Seed Honey	67
4.4.2. Effect of Volume of Adulterant on Apparent Viscosity for Clover Honey	69
4.4.3. Effect of Volume of Adulterant on Apparent Viscosity for Desert Honey	71
4.4.4. Effect of Volume of Adulterant on Apparent Viscosity for Mountain Flower Honey	73
4.5. Effect of Temperature on Apparent Viscosity	75
4.5.1. Effect of Temperature on Apparent Viscosity of Black Seed Honey	76
4.5.2. Effect of Temperature on Apparent Viscosity of Clover Honey	80
4.5.3. Effect of Temperature on Apparent Viscosity of Desert Honey	84

4.5.4. Effect of Temperature on Apparent Viscosity of Mountain Flower Honey	88
4.6. Thixotropy effect	93
4.6.1. Thixotropic Effect of Adulterated Desert Honey at 20°C	94
4.6.2. Thixotropic Effect of Adulterated Desert Honey at 30°C	98
4.6.3. Thixotropic Effect of Adulterated Desert Honey at 40°C	102
4.6.4. Thixotropic Effect of Adulterated Desert Honey at 50°C	106
4.7. Thixotropy Models	110
4.7.1. Effect of Time on Apparent Viscosity	110
4.7.1. Weltman Model	116
Chapter Five: Conclusion and Recommendations	125
5.1. Conclusion	125
5.2. Recommendations	126
References	127
Appendixes	131
Appendix A	131
Appendix B	139

List of Figures

Figure (2.1) Shear Diagram for Time Independent Fluid.	9
Figure (2.2) Bingham Ideal Plastic Behavior Compared to Real Plastic Behavior	12
Figure (2.3) Schematic Demonstration of Shear Thinning Behavior	. 13
Figure (2.4) Shear Thickening Behavior	. 15
Figure (2.5) Shear Diagram for time dependent Fluid	16
Figure (2.6) Rheopectic Behavior of Polyester	17
Figure (2.7) Thixotropic Behavior of Red Mud Suspension	. 18
Figure (2.8) Thixotropic Behavior of Cement Paste.	19
Figure (3.1) Abbe 60 Refractometer	24
Figure (3.2) Sensodirect 150 Digital PH Meter with Probes	25
Figure (3.3) Brookfield (DVIII Ultra) Rheometer	26
Figure (4.1) Viscosity versus Shear Rate of Black Seed Honey with 4% Starch Solution	38
Figure (4.2) Shear Stress versus Shear Rate of Black Seed Honey with 4% Starch Solution.	39
Figure (4.3) Viscosity versus Shear Rate of Black Seed Honey with Glucose	40
Figure (4.4) Shear Stress versus Shear Rate of Black Seed Honey with Glucose	40
Figure (4.5) Viscosity versus Shear Rate of Black Seed Honey with Molasses	41
Figure (4.6) Shear Stress versus Shear Rate of Black Seed Honey with Molasses	42
Figure (4.7) Viscosity versus Shear Rate of Black Seed Honey with Distilled Water	43
Figure (4.8) Shear Stress versus Shear Rate of Black Seed Honey with Distilled Water	44
Figure (4.9) Viscosity versus Shear Rate of Clover Honey with 4% Starch Solution	45
Figure (4.10) Shear Stress versus Shear Rate of Clover Honey with 4% Starch Solution	46
Figure (4.11) Viscosity versus Shear Rate of Clover Honey with Glucose	47
Figure (4.12) Shear Stress versus Shear Rate of Clover Honey with Glucose	48

Figure (4.13) Viscosity versus Shear Rate of Clover Honey with Molasses	49
Figure (4.14) Shear Stress versus Shear Rate of Clover Honey with Molasses	49
Figure (4.15) Viscosity versus Shear Rate of Clover Honey with Distilled Water	50
Figure (4.16) Shear Stress versus Shear Rate of Clover Honey with Distilled Water	51
Figure (4.17) Viscosity versus Shear Rate of Desert Honey with 4% Starch Solution	52
Figure (4.18) Shear Stress versus Shear Rate of Desert Honey with 4% Starch Solution	53
Figure (4.19) Viscosity versus Shear Rate of Desert Honey with Glucose	54
Figure (4.20) Shear Stress versus Shear Rate of Desert Honey with Glucose	54
Figure (4.21) Viscosity versus Shear Rate of Desert Honey with Molasses	55
Figure (4.22) Shear Stress versus Shear Rate of Desert Honey with Molasses	56
Figure (4.23) Viscosity versus Shear Rate of Desert Honey with Distilled Water	57
Figure (4.24) Shear Stress versus Shear Rate of Desert Honey with Distilled Water	58
Figure (4.25) Viscosity versus Shear Rate of Mountain Flower Honey with 4% Starch Solution.	59
Figure (4.26) Shear Stress versus Shear Rate of Mountain Flower Honey with 4% Starch Solution.	60
Figure (4.27) Viscosity versus Shear Rate of Mountain Flower Honey with Glucose	61
Figure (4.28) Shear Stress versus Shear Rate of Mountain Flower Honey with Glucose	62
Figure (4.29) Viscosity versus Shear Rate of Mountain Flower Honey with Molasses	63
Figure (4.30) Shear Stress versus Shear Rate of Mountain Flower Honey with Molasses	63
Figure (4.31) Viscosity versus Shear Rate of Mountain Flower Honey with Distilled Water	64
Figure (4.32) Shear Stress versus Shear Rate of Mountain Flower Honey with Distilled Water	65
Figure (4.33) Apparent Viscosity of Black Seed Honey at Different Volumes of 4% Starch Solution	67
Figure (4.34) Apparent Viscosity of Black Seed Honey at Different Volumes of Glucose	68
Figure (4.35) Apparent Viscosity of Black Seed Honey at Different Volumes of Molasses	68
Figure (4.36) Apparent Viscosity of Black Seed Honey at Different Volumes of Distilled Water	69

Figure (4.37) Apparent Viscosity of Clover Honey at Different Volumes of 4% Starch Solution	69
Figure (4.38) Apparent Viscosity of Clover Honey at Different Volumes of Glucose	70
Figure (4.39) Apparent Viscosity of Clover Honey at Different Volumes of Molasses	70
Figure (4.40) Apparent Viscosity of Clover Honey at Different Volumes of Distilled Water	71
Figure (4.41) Apparent Viscosity of Desert Honey at Different Volumes of 4% Starch Solution	71
Figure (4.42) Apparent Viscosity of Desert Honey at Different Volumes of Glucose	72
Figure (4.43) Apparent Viscosity of Desert Honey at Different Volumes of Molasses	72
Figure (4.44) Apparent Viscosity of Desert Honey at Different Volumes of Distilled Water	73
Figure (4.45) Apparent Viscosity of Mountain Flower Honey at Different Volumes of 4% Starch Solution.	73
Figure (4.46) Apparent Viscosity of Mountain Flower Honey at Different Volumes of Glucose	74
Figure (4.47) Apparent Viscosity of Mountain Flower Honey at Different Volumes of Molasses	.74
Figure (4.48) Apparent Viscosity of Mountain Flower Honey at Different Volumes of Distilled Water	75
Figure (4.49) Temperature versus Viscosity of Black Seed Honey with 4% Starch Solution at	
Shear Rate 4.1976s ⁻¹	76
Figure (4.50) (a) Fitting of data to Arrhenius Equation	
(b) Activation Energy of Black seed Adulterated with 4% Starch Solution	.77
Figure (4.51) Temperature versus Viscosity of Black Seed Honey with Glucose at Shear Rate	
4.1976s ⁻¹	77
Figure (4.52) Activation Energy of Black Seed Adulterated with Glucose	78
Figure (4.53) Temperature versus Viscosity of Black Seed Honey with Molasses at Shear Rate	
4.1976s ⁻¹	78
Figure (4.54) Activation Energy of Black Seed Adulterated with Molasses.	79
Figure (4.55) Temperature versus Viscosity of Black Seed Honey with Distilled Water at	
Shear Rate 4.1976s ⁻¹	79
Figure (4.56) Activation Energy of Black Seed Honey Adulterated with Distilled Water	80

Figure (4.57) Temperature versus Viscosity of Clover Honey with 4% Starch Solution at	
Shear Rate 4.2033s ⁻¹	80
Figure (4.58) Activation Energy of Clover Honey Adulterated with 4% Solution Starch Solution.	81
Figure (4.59) Temperature versus Viscosity of Clover Honey with Glucose at Shear Rate	
4.2033s ⁻¹	81
Figure (4.60) Activation Energy of Clover Honey Adulterated with Glucose	82
Figure (4.61) Temperature versus Viscosity of Clover Honey with Molasses at Shear Rate	
4.1976s ⁻¹	82
Figure (4.62) Activation Energy of Clover Honey Adulterated with Molasses	83
Figure (4.63) Temperature versus Viscosity of Clover Honey with Distilled Water at Shear	
Rate 4.1976s ⁻¹	83
Figure (4.64) Activation Energy of Clover Honey Adulterated with Distilled Water	. 84
Figure (4.65) Temperature versus Viscosity of Desert Honey with 4% Starch Solution at	
Shear Rate 4.2033s ⁻¹	84
Figure (4.66) Activation Energy of Desert Honey adulterated with 4% Starch Solution	85
Figure (4.67) Temperature versus Viscosity of Desert Honey with Glucose at Shear Rate	
4.2111s ⁻¹	85
Figure (4.68) Activation Energy of Desert Honey Adulterated with Glucose	86
Figure (4.69) Temperature versus Viscosity of Desert Honey with Molasses at Shear Rate	
4.1976s ⁻¹	86
Figure (4.70) Activation Energy of Desert Honey Adulterated with Molasses	87
Figure (4.71) Temperature versus Viscosity of Desert Honey with Distilled Water at Shear	
Rate 4.1976s ⁻¹	. 87
Figure (4.72) Activation Energy of Desert Honey Adulterated with Distilled Water	88
Figure (4.73) Temperature versus Viscosity of Mountain Flower Honey with 4% Starch	
Solution at Shear Rate 4.2033s ⁻¹	88

Solution	89
Figure (4.75) Temperature versus Viscosity of Mountain Flower Honey with Glucose at	
Shear Rate 4.2130s ⁻¹	89
Figure (4.76) Activation Energy of Mountain Flower Honey Adulterated with Glucose	90
Figure (4.77) Temperature versus Viscosity of Mountain Flower Honey with Molasses at	
Shear Rate 4.2059s ⁻¹	90
Figure (4.78) Activation Energy of Mountain Flower Honey Adulterated with Molasses	91
Figure (4.79) Temperature versus Viscosity of Mountain Flower Honey with Distilled	
Water at Shear Rate 4.2059s ⁻¹	91
Figure (4.80) Activation Energy of Mountain Flower Honey Adulterated with Distilled Water.	92
Figure (4.81) Thixotropy Effect (Shear Stress - Shear Rate) of Different Honey Types at	
Room Temperature	93
Figure (4.82) Thixotropy Effect of Desert Honey with 4% Starch Solution at 20 °C	94
Figure (4.83) Thixotropy Effect of Desert Honey with Glucose at 20 °C.	95
Figure (4.84) Thixotropy Effect of Desert Honey with Molasses at 20 °C.	96
Figure (4.85) Thixotropy Effect of Desert Honey with Distilled Water at 20 °C	97
Figure (4.86) Thixotropy Effect of Desert Honey at 30 °C	98
Figure (4.87) Thixotropy Effect of Desert Honey with 4% Starch Solution at 30 °C	98
Figure (4.88) Thixotropy Effect of Desert Honey with Glucose at 30 °C.	99
Figure (4.89) Thixotropy Effect of Desert Honey with Molasses at 30 °C.	100
Figure (4.90) Thixotropy Effect of Desert Honey with Distilled Water at 30 °C	101
Figure (4.91) Thixotropy Effect of Desert Honey at 40 °C.	102
Figure (4.92) Thixotropy Effect of Desert Honey with 4% Starch Solution at 40 °C	102
Figure (4.93) Thixotropy Effect of Desert Honey with Glucose at 40 °C.	. 103
Figure (4.94) Thixotropy Effect of Desert Honey with Molasses at 40 °C	104

Figure (4.95) Thixotropy Effect of Desert Honey with Distilled Water at 40 °C	105
Figure (4.96) Thixotropy Effect of Desert Honey at 50 °C.	. 106
Figure (4.97) Thixotropy Effect of Desert Honey with 4% Starch Solution at 50 °C	106
Figure (4.98) Thixotropy Effect of Desert Honey with Glucose at 50 °C.	107
Figure (4.99) Thixotropy Effect of Desert Honey with Molasses at 50 °C.	108
Figure (4.100) Thixotropy Effect of Desert Honey with Distilled Water at 50 °C	109
Figure (4.101) Effect of Time on the Viscosity of Desert Honey with 4ml of 4% Starch	
Solution at 20 °C	. 110
Figure (4.102) Effect of Time on the Viscosity of Desert Honey with 6ml of 4% Starch	
Solution at 20 °C	. 111
Figure (4.103) Effect of Time on the Viscosity of Desert Honey with 10ml of 4% Starch	
Solution at 20 °C	111
Figure (4.104) Effect of Time on the Viscosity of Desert Honey with 2ml Glucose at 20 °C	. 112
Figure (4.105) Effect of Time on the Viscosity of Desert Honey with 4ml Glucose at 20 °C	. 112
Figure (4.106) Effect of Time on the Viscosity of Desert Honey with 6ml Glucose at 20 °C	. 113
Figure (4.107) Effect of Time on the Viscosity of Desert Honey with 8ml Glucose at 20 °C	113
Figure (4.108) Effect of Time on the Viscosity of Desert Honey with 10ml Glucose at 20 $^{\circ}$ C	114
Figure (4.109) Effect of Time on the Viscosity of Desert Honey with 4ml Molasses at 20 °C	. 114
Figure (4.110) Effect of Time on the Viscosity of Desert Honey with 6ml Molasses at 20 °C	115
Figure (4.111) Effect of Time on the Viscosity of Desert Honey with 2ml Distilled Water	
at 20 °C	. 115
Figure (4.112) Effect of Time on the Viscosity of Desert Honey with 4ml Distilled Water	
at 20 °C	. 116
Figure (4.113) Relation between Shear Stress of Desert Honey with 4ml of Starch Solution	
and Ln (Time)	. 117