The Integrated Imaging Approach to Evaluatation of Bone Mineral Density

Essay

Submitted for partial fulfillment of master degree in radiodiagnosis

By

Salma Fadeel Muftah Fadeel

M.B.B.CH

Sert University - Libya

Supervisors

Dr.Rasha Mohamed KamalEldin

Professor of Radiodiagnosis

Faculty of Medicine

Cairo University

Dr.Marian Fayek Farid

Lecturer of Radiodiagnosis

Cairo University

Faculty of Medicine – Cairo University 2014

Key words

- osteoporosis
- Bone mineral density
- Dual x-ray absorptiometry

Abstract

The radiologists have several importantroles and responsibilities in the imaging ofosteoporosis: We need to (a) diagnose osteoporosis, (b) alert clinicians to increased fracture risk, (c)monitor treatment, and (d) correctly interpret fragility fractures. In addition we need to ensure that the proper imaging modality is used whenever possible—that is, if DXA has limitations, an attempt should be made to use quantitative CT, and if this is not possible we need to indicate the limitations in our report to the referring clinician. Also, we are responsible for quality assurance of quantitative measurements and we should be a driving force in developing new techniques to analyze bone quality. In recent years, new imaging modalities such as micro-CT and high-resolution magnetic resonance imaging have been developed in an attempt to help diagnose osteoporosis in its early stages, thereby reducing social and economic costs and preventing patient suffering.

Acknowledgement

First and foremost thanks to God who helped me to accomplish this work.

Grateful thanks, great appreciation and my deepest gratitude to Professor Dr. Rasha Mohamed KamalEldin Professor of Radiology, Faculty of Medicine. Cairo University, for her great experience, kind heart, great help and assistance. I am deeply grateful for her more than words can ever express.

I would like to express my deepest gratitude, thanks and respect to Dr. Marian Fayek Farid Lecturer of Radiology, Faculty of Medicine Cairo University, for her patience, care and concern throughout this work, providing this essay with her scientific experience and constructive supervision.

Words could not express my great appreciation, and my feeling of gratitude, thanks and respect to my dear parents, my dear husband, my dear daughters and all my family.

Finally, I would like to thank all members of the Radiology Department, Cairo University.

LIST OF CONTENT

Subject	Page
I. Introduction and aim of work	1
II. Review of literature	
1. Anatomy of Bone	4
2. Pathophysiology of Osteoporosis	18
3. Physical Principles Of DEXA	32
4. Technique Of Performing DEXA Examination	43
5. Current Methods of Non-invasive BMD	
Measurement	65
• Conventional radiography	65
• DEXA	75
• Quantitative CT	81
• Morphometry	87
• Quantitative US	91
• MR imaging	94
III. Summary and Conclusion	99
IV. References	101

List of figures

Fig	Title	Page
1	Illustration of a human femur	5
2	Femur head with a cortex of compact bone and medulla of trabecular bone.	6
3	spongy and compact osseous	7
4A	Osteoblasts Cells	10
4B	Multinucleated osteoclast Cells	10
5	Illustration of Long bone	17
6	The bone remodeling cycle on a trabecular	27
7	The mass attenuation coefficient versus X-ray photon energy	33
8	A pencil beam DXA Scanner	36
9	fan beam DXA Scanner	37
10	Peripheral DXA scanner	38
11	Dual energy X-ray absorptiometry. PA study of the lumbar spine. Patient is positioning.	47
12	Dual energy X-ray absorptiometry of the hip. Patient's positioning Dual energy X-ray absorptiometry of the	48
13	forearm.Patient's positioning	48
14A	DEXA showsincorrect placement of region of interest (ROI)	51
14B	DEXA image shows correct ROI placement On posteroanterior DXA image, the lesser trochanter	51
15	is not seen in its entirety, indicating proper internal rotation of the thigh for analysis of the femoral neck at its greatest long-axis measurement	52
16A	(DEXA) image of proximal femur shows inappropriate positioning of femoral head	54
16B	DEXA image shows appropriate rotation in that lesser	54

	trochanter is not depicted.	
	DEXA shows artifact caused by metallic removable	
17A	piercing	55
1 <i>7</i> D	DEXA image shows dense structure (arrow)	<i>-</i> -
17B	superimposed over L1 vertebral body.	55
17C	DEXA image shows presence of surgical material over	56
	L4-L5 increases bone mineral density values (L3	
18A	artifacts can be caused by retained contrast material	_
	from previous examinations,	56
18B	DEXA image shows densities overlying L3 and L5	
	caused by retained myelographic contrast medium	56
	woman with osteoporotic L1 and L3 fractures	
18C	sustained 1 year ago and managed with vertebroplasty.	
	DEXA image shows T-scores are higher than for	57
	adjacent vertebrae	
10.4	(DEXA) image shows previously unknown calcified	
19A	nonfunctioning kidney. Radiograph confirms finding	57
4.075	DEXA image and radiograph show calcification that	
19B	proved to be hepatic hydatid cyst	57
	Dual-energy x-ray absorptiometric image and	
20	radiograph show multiple seeming calcifications superimposed on left hip.	58
21	Dual-energy x-ray absorptiometric image and	
	radiograph show area of laminectomy and calcified	58
22	bone graft over L4–L5 vertebral bodies.	
22	Dual-energy x-ray absorptiometric image shows	
	artifactual increase in bone mineral density (arrow) in	59
	affected vertebrae due to osteophytes	

23	Dual-energy x-ray absorptiometric image shows high-	
	density L1 vertebral body of reduced size consistent	60
	with vertebral fracture	00
	Dual-energy x-ray absorptiometric image and	
24	radiograph depict dense round area in trochanteric	60
24	region.	
	Dual-energy x-ray absorptiometric image and	
25	radiograph show dense round area overlying L4	<i>C</i> 1
25	vertebral body (solid arrows) that turned out to be left	61
	L4 sclerotic pedicle	
26	Posteroanterior dual-energy x-ray absorptiometric (DXA) image of lumbar spine shows dense vertebrae	
	with high T-score at all levels.	61
27	Lateral radiograph of the dorsal spine shows	67
	generalized severe osteopenia,	
28	Radiograph of a single vertebra displays characteristic	69
	features of osteoporosis, including overall increased	
	radiolucency, a well-demarcated cortical rim, and verticalization of the trabeculae	
29	Lateral radiograph of the dorsal spine shows a wedge	70
	fracture (arrow) associated with severe osteopenia and	
	causing a kyphotic deformity	
30	Lateral radiograph of the dorsolumbar junction shows	70
	a wedge fracture of T12 (arrow) associated with involutional osteoporosis	
31	Radiograph shows the principal compressive,	73
	secondary compressive, principal tensile (black	, 0
22.4	arrowhead), secondary tensile	70
32A	On a posteroanterior DXA image of L1 through L4,	79
	the shapes of the vertebrae are created primarily by the	
	posterior elements.	

List of figures

32B	DXA image of the proximal femur shows the femoral	79
	neck (rectangle),	
33A	Scout image shows the location of sections obtained	82
	through the first four lumbar vertebral bodies.	
33B	Axial CT scan shows placement of an elliptic ROI to	82
	measure the volume of purely trabecular bone in a	
	vertebral body	
34	Three-dimensional volume-rendered reformatted	85
	image of the proximal femur used to evaluate BMD	
	with quantitative CT	
35	Lateral radiographs (left) and magnified view with	89
	accompanying chart (right) illustrate the use of mor-	
	phometric software to define vertebral edges and	
	measure vertebral heights for quantitative diagnosis of	
	fracture	
36	Distal radius high-spatial-resolution MR image	75
37	vivo high-resolution MR image of the calcaneus	75
	depicts the trabecular bone structure.	

LIST OF ABBREVIATIONS

• μSv: micro sievert

• **BMD:** Bone Mineral Density

• **CV:** Coefficient of Variation

• **DEXA** Dual energy x-ray absorptiometry.

• **DPA** Dual photon absorptiometry.

• **DXA:** Dual x-ray Absorptiometry

• NOF: National Osteoporosis Foundation

• **pDXA:** Peripheral DXA

• PQC peripheral quantitative computed tomography.

• **pQCT:** Peripheral QCT

• QCT Quantitative computed tomography.

• **QCT**: Quantitative CT

• **QUI:** Quantitative Ultrasound Index

• **QUS:** Quantitative Ultrasound

• RA: Radiographic Absorptiometry

• **ROI:** Region Of Interest

• **SD:** Standard Deviation

• **SPA** Single photon absorptiometry.

• **SXA** Single x-ray absorptiometry.

• WHO: World Health Organization

• **DXR**: digital x-ray radiogrammetry.

• **PMO**: Postmenopausal osteoporosis

• **GnRH**: gonadotropin-releasing hormone

• LHRH: luteinizing hormone-releasing hormone

• **SSRIs**: Selective serotonin reuptake inhibitors

• RANKL: The receptor activator of nuclear factor-kappa B ligand

List Of Abbreviations

• **OPG**: osteoprotegerin

• **SSRIs:** Selective serotonin reuptake inhibitors

• **BSUs**: bone structural units

• OCN: osteocalcin

• **SIBLINGS**: (Small Integrin-Binding Ligand, N-linked Glycoprotein)

• **ECM**: extracellular matrix

• (Ce): cerium

• (Sm): samarium

• **BMC**: bone mineral content

• LSC: least significant change

• **SERAM**: Spanish Society of Medical Radiology

• **OPUS**: osteoporosis-US

• UTE: ultrashort-echo-time

• **HR-pQ CT:** High Resolusion pQCT

Introduction

INTRODUCTION AND AIM OF WORK

Osteoporosis is the most common of all metabolic bone disorders. It is characterized by low bone mass and microarchitectural deterioration of bone tissue, with a consequent increase in bone fragility and susceptibility to fractures. Because of the increasing aging of the world population, the number of persons affected by osteoporosis is also increasing) (Guglielmi, et al, 2011) .In the medical literature, osteoporosis is currently presented as a major global public health problem, one that has already been proposed as the disease of the twenty-first century (Clark 2002). As a consequence of its current medical definition, approximately 200 million women worldwide are described as having osteoporosis (Lane, 2006) (Santora and Skolbekken, 2011).

Most individuals with osteoporosis are asymptomatic, undiagnosed, and untreated. In the National Ambulatory Medical Care Survey, investigators found that primary care physicians diagnosed osteoporosis in fewer than 2 per cent of women over 60 years old, even though the expected prevalence in this population is 20 to 30 per cent. Men appear to be diagnosed and treated less often than women. Complications related to osteoporosis can create social and economic burdens (Guglielmi, et al, 2011).

Not only has osteoporosis been attributed an important role in the causation of fractures but it is also seen as a major killer. This is because hip fractures are perceived as causing what in medical terms is described as an excess mortality among the aged (Consensus Development Conference 1991)(Santora and Skolbekken, 2011).

For these reasons, the early diagnosis of osteoporosis is crucial (Guglielmi, et al, 2011).

Dual x-ray absorptiometry is currently the state-of-the-art technique to measure bone mineral density and to diagnose osteoporosis according to the World Health Organization guidelines. Motivated by a 2000 National Institutes of Health consensus conference, substantial research efforts have focused on assessing bone quality by using advanced imaging techniques. Among these techniques aimed at better characterizing fracture risk and treatment effects, high-resolution peripheral quantitative computed tomography (CT) currently plays a central role, and a large number of recent studies have used this technique to study trabecular and cortical bone architecture. Other techniques to analyze bone quality include multidetector CT, magnetic resonance imaging, and quantitative ultrasonography. In addition to quantitative imaging techniques measuring bone density and quality, imaging needs to be used to diagnose prevalent osteoporotic fractures, such as spine fractures on chest radiographs and sagittal multidetector CT reconstructions. Radiologists need to be sensitized to the fact that the presence of fragility fractures will alter patient care, and these fractures need to be described in the report (Link, 2012).

Key words

- osteoporosis
- Bone mineral density
- Dual x-ray absorptiometry

Aim of the work

The aim of this work is to highlight and clarify the role of new imaging modalities in measurement of bone mineral density in an attempt to help diagnose osteoporosis in its early stages, thereby reducing social and economic costs and preventing patient suffering.

Anatomy Of Bone