

Comparison of the Effect of Norepinephrine and Dopamine on Cerebral Haemodynamics in Severely Brain Injured Patients Using Transcranial Doppler

Thesis

Submitted for Partial Fulfillment of MD Degree In Intensive Care

By Hend Abdelsabour Mansour

M.B.B.Ch. – M.Sc Intensive Care Faculty of Medicine- Ain Shams University

Under Supervision of Prof. Dr. Amir Ibrahim Salah

Professor of Anaesthesia and Intensive Care Faculty of Medicine- Ain Shams University

Dr. Safaa Ishak Ghaly

Assistant Professor of Anaesthesia and Intensive Care Faculty of Medicine-Ain Shams University

Dr. Magdy Khalaf Massoud

Consultant and Head of Neurological Department Elmataria Teaching Hospital

Dr. Mayar Hassan El Sersi

Assistant Professor of Anaesthesia and Intensive Care Faculty of Medicine- Ain Shams University

Dr. Heba Abdelazeem Labib

Assistant Professor of Anaesthesia and Intensive Care Faculty of Medicine- Ain Shams University

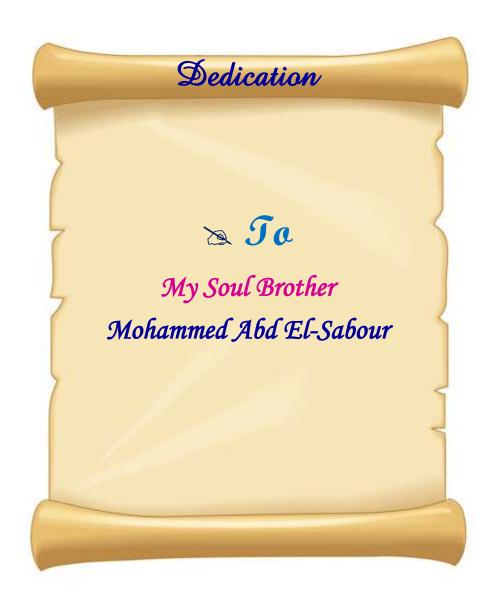
> Faculty of Medicine Ain Shams University 2017

Acknowledgement

First of all, I would like to express my deep gratitude to **ALLAH** for his care and generosity throughout my life...

No words can express my deepest appreciation and profound respect to **Prof. Dr. Amir Ibrahim Salah**, Professor of Anaesthesia and Intensive Care, Ain Shams University, for his continuous guidance and support. He has generously devoted much of his time and his effort for planning and supervision of this study.

Also, my profound gratitude to **Dr. Safaa Ishak Ghaly,** Assistant Professor of Anaesthesia and Intensive Care, Ain Shams University, for her kind supervision and support. It was great honor to work under her supervision.


I would like also to thank **Dr. Magdy Khalaf Massoud**, Consultant and Head of Neurological Department,
Elmataria Teaching Hospital, for his support, help and
constructive criticism during this work.

I would like also to thank **Dr. Mayar Hassan El Sersi,** Assistant Professor of Anaesthesia and Intensive Care, Ain Shams University Hospitals, for her support and help during this work.

Also, my profound gratitude to **Dr. Heba Abdelazeem Labib,** Assistant Professor of Anaesthesia and Intensive Care,
Ain Shams University, for her great care and support.

Last but not least, I dedicate this work to my family, whom without their sincere emotional support, pushing me forward this work would not have ever been completed.

Hend Abdelsabour

List of Abbreviations Meaning

Abb.

ABG : Arterial blood gas

ACA : Anterior cerebral artery

AComA : Anterior communicating arteries

AMP : Adenosine monophosphate

: Arterial pressure AP

ATP : Adenosine triphosphate

AU : Arbitrary unit

AVDO₂ : Arteriovenous difference in oxygen

BBB : Blood brain barrier

BP : Blood pressure

Ca²⁺ : Calcium

: Cyclic adenosine monophosphate cAMP

CBF : Cerebral blood flow

CBV : Cerebral blood volume

CI : Cardiac index

CMRO₂ : Cerebral metabolic rate of oxygen

CO : Cardiac output : Carbon dioxide CO_2 : Carbon dioxide CO₂

CPP : Cerebral perfusion pressure

CSF : Cerebrospinal fluid

CT : Computed tomogram

CTA : Computerized tomography angiography

CVP : Central venous pressure

: Cerebrovascular resistance CVR

DA : Dopamine

List of Abbreviations (Cont.) Meaning Abb. : Oxygen delivery DO_2 DR : Dopaminergic receptor eCPP : Estimating cerebral perfusion pressure EDV : End-diastolic velocity FV : Flow velocity FVd : Diastole flow velocity : Maximum FV **FVmax** FVs : Systole flow velocity GCS : Glasgow coma scale HR : Heart rate ICA : Internal carotid artery ICH : Intracranial hemorrhage ICP : Intracranial pressure ICU : Intensive care unit IL : Interleukin IV : Intravenous Κ : Potassium LDF : Laser Doppler flowmetry : Length of stay LOS : Left ventricle stroke work index LVSWI MAP : Mean arterial pressure : Methylene blue MB MCA : Middle cerebral artery MHz : Mega Hertz MRI : Magnetic resonance Imaging : Mean velocity MV Na : Sodium

: Norepinephrine

NE

List of Abbreviations (Cont.) Meaning Abb. OA : Ophthalmic artery OEF : Oxygen extraction fraction : Arterial carbon dioxide tension PaCO₂ PaO₂ : Arterial oxygen tension PbtO₂ : Brain oxygen tension **PCA** : Posterior cerebral artery **PComA** : Posterior communicating arteries PCWP : Pulmonary capillary wedge pressure рHi : The gastric intramucosal PH Ы : Pulsatility index **PVR** : pulmonary vascular resistance : Right ventricle stroke work index RVSWI SAH : Subarachnoid hemorrhage SaO₂ : Arterial oxygen saturation SjO₂ : Jugular bulb oxygen saturation SV : Peak systolic velocity SVI : Stroke volume index SVR : Systemic vascular resistance TBI : Traumatic brain injury TCD : Transcranial doppler TD : Thermal diffusion UCP 2 : Mitochondrial uncoupling protein UO : Urine output V1 : Vasopressin type 1 VA : Vertebral arteries : Oxygen uptake VO₂ vWF : von willebrand factor

: Zero-flow pressure

ZFP

List of Figures

Fig. No.	Title	Page No.
Figure (1):	Comparison of the response of CBF PaO ₂ , and PaCO ₂ .	
Figure (2):	Relationship between extremes of CPP	and ICP
	in states of normal (purple line) and	reduced
	intracranial compliance (blue line)	14
Figure (3):	A, Lateral skull x-ray confirming	adequate
	SjvO2 catheter placement at C1-C2	level. B,
	Head CT scan showing the catheter tip	correctly
	placed at the jugular venous bulb level	18
Figure (4):	(a) Insonation area of cervic	ocerebral
	vasculature, (b) Upper panel: shows	normal
	MCA, Lower panel shows normal OA a	and MCA
		25
Figure (5):	TCD findings. TCD findings. The to	op panel
	shows a normal flow pattern in Mo	CA with
	aspectrum of flow velocities. The botto	om panel
	shows a complete ACA	31
Figure (6):	TCD findings. MCA and PCA	32
Figure (7):	Relationship between the components	of FV
		33

List of Figures (Cont..)

Fig. No.	Title Po	age	No.
Figure (8):	Recordings of ICP, CPP and LDF signals du waves of raised ICP in a patient with a different head injury	ffuse	36
Figure (9):	CPP Versus SjO2 and Pulsatility index showing the CPP breakpoint of 70mm	mHg	39
Figure (10):	Doppler tracing showing high Doppler velocity: (a) non-hyperemic and (b) hypere	emic	41
Figure (11):	(a) CPP versus SjO ₂ , showing CPP breakpafter intracranial pressure (ICP) reduction therapy. (b)CPP versus Doppler PI, show CPP breakpoint after ICP reduction the	etion wing erapy	42
Figure (12):	TCD examine brain death. As intracra pressure rises, diastolic flow becompromised first, resulting in a more perappearance of the TCD waveform. Continuous intracranial exceeds diastolic pressure, reverses during diastole	omes aked Once flow	44

List of Figures (Cont..)

Fig. No.	Title	Page No.
Figure (13):	TCD machine	69
Figure (14):	Figure showing insonation of MCA temporal window	_
Figure (15):	Figure showing the carotid bi	
Figure (16):	Figure showing how to read v	
Figure (17):	Age in two groups. Data are presented ±SD	
Figure (18):	Gender in two groups. Data are pres	
Figure (19):	HR in two groups. Data are presented ±SD	
Figure (20):	MAP in two groups. Data are presented ±SD	
Figure (21):	MV in two groups. Data are presented ±SD	

List of Figures (Cont..)

Fig. No.	Title	Page No.
Figure (22):	MV in two groups. Data are mean ±SD	
Figure (23):	CPP in two groups. Data are mean ±SD	-
Figure (24):	CPP in two groups. Data are mean ±SD	
Figure (25):	ZFP in two groups. Data are mean ±SD	-
Figure (26):	Paco2 in two groups. Data are mean ±SD	•
Figure (27):	LOS in two groups. Data are mean ±SD	

List of Tables

Table No.	Title	Page N	0.
Table (1):	Cerebral Blood Thresholds		8
Table (2):	Adrenoceptor distribution determines	vascular	49
	responses to catecholamines		
Table (3):	Demographic Data of studied patients		77
Table (4):	Glasgow Coma Scale (GCS) and initial	computed	79
	tomography (first CT) of studied patients		
Table (5):	Mean arterial pressure (MAP) and Heart rate	(HR)	79
Table (6):	Mean velocity of MCA (MV) and cerebral	perfusion	81
	pressure (CPP) in Group N		
Table (7):	Mean velocity of MCA (MV) and cerebral	perfusion	82
	pressure (CPP) in Group D		
Table (8):	Mean velocity of MCA (MV), cerebral	perfusion	83
	pressure(CPP) and Zero flow pressure (ZF	P) in the	
	two groups after the vasopressor drug		
Table (9):	Dose, PaCO ₂ and length of stay in ICU (LOS	S)	86

Contents

Title	Page No.
Introduction	1
Aim of the Study	5
Chapter (I): Principles of Cerebral Metabolic Blood Flow	
Chapter (II): Monitoring of Cerebral Bloo	d Flow17
Chapter (III): Inotropes and Vasopressor	Therapy46
Patients and Methods	66
Results	76
Discussion	89
Conclusion and Recommendations	109
Summary	111
References	116
Arabic Summary	

Introduction

Aim of the Study

Review of Literature