### Role of Autonomic Nervous System in pain

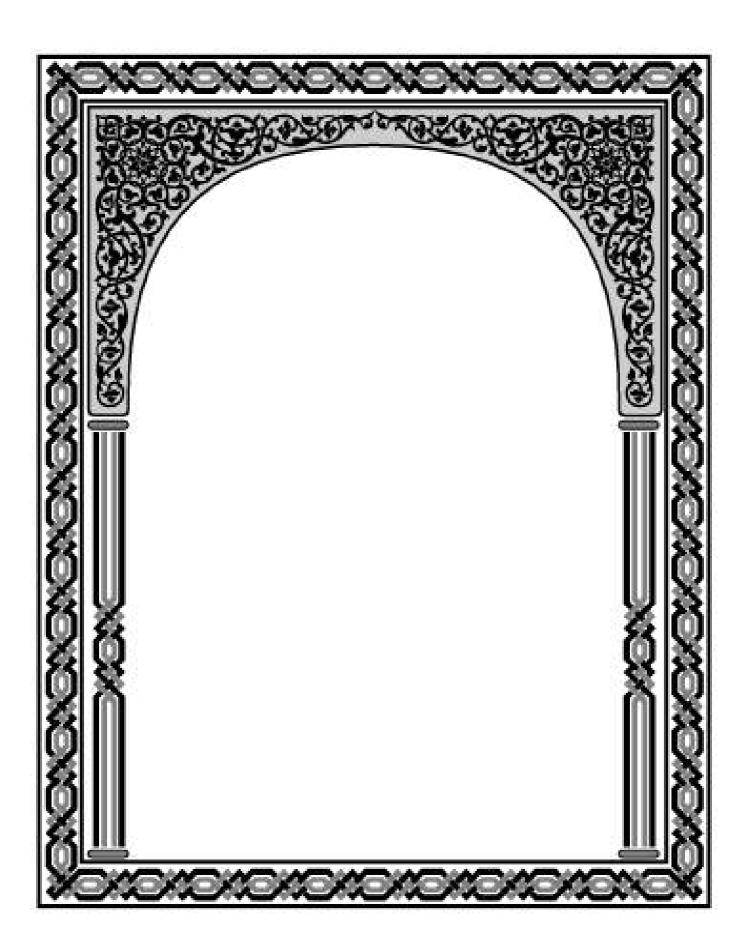
An Essay Submitted for Partial Fulfillment of M.Sc. Degree in Anesthesiology

By
Hisham Mahmoud El.Said Bassiouny
(M.B.B.Ch.)

Supervised by

#### Dr. Maher Fawzy Mahmoud

Professor of Anesthesiology
Faculty of Medicine
Cairo University


#### Dr. Gomaa Zohery Hussein

Assistant Professor of Anesthesiology
Faculty of Medicine
Cairo University

#### Dr. Dina Zakeria

**Lecturer of Anesthesiology Faculty of Medicine Cairo University** 

Faculty of Medicine Cairo University 2008



#### **ACKNOWLEDGEMENTS**

Thanks for God for giving me the power and strength to carry out this work.

Words stand short where they come to express my gratefulness to my supervisor.

I would like to record my heart felt thanks and sincere gratitude to **Prof Dr. Maher Fawzy Mahmoud** Professor of anesthesiology, Faculty of Medicine, Cairo University for his remarkable effort, considerable help and his continuous guidance which were the major factor behind the completion of this work.

My deep gratitude goes to his faithful methodical supervision, great cooperation and his generosity in revision this work and offered me a great help.

My deep gratitude goes for *Assistant Prof Dr. Gomaa Zohery Hussein*, Faculty of Medicine, and Cairo University supervision. He generously offered me a great help through his enormous support and encouragement.

My deep gratitude goes for lecturer of anesthesiology *Dr. Dina Zakeria*, Faculty of Medicine, and Cairo University for her valuable advice.

I would like to express my great thanks to all member of my family especially *my mother* for providing love and care.

#### **Dedication**

This work is dedicated to my great mother, which always told me don't look for the beauty or smoothness of the skin but look for the heart that loyal within. The beauty may fade, the skin become old but the heart that loyal within never come cold

Thank you for every thing.

Hisham elsaid

#### **Abstract**

Neuropathic pain is a sequela of dysfunction, injuries, or diseases of the peripheral and/or central nervous system pain pathways, which has historically been extremely difficult to treat. Complex regional pain syndrome (CRPS) types 1 and 2 are neuropathic pain conditions that have a long history in the medical literature but whose pathophysiology remains elusive and whose available treatment options remain few. Bisphosphonates have been used for pathologic conditions associated with abnormal bone metabolism, such as osteoporosis, Paget's disease and cancer-related bone pain for many years. More recently, results of clinical trials have indicated the potential role of bisphosphonates in the treatment of CRPS/RSD. In this paper we will review the preclinical studies regarding the use of bisphosphonates as analgesics in animal models of neuropathic pain, and also summarize the clinical trials that have been done to date. We will give an overview of bisphosphonate pharmacology and discuss several potential mechanisms by which bisphosphonates may be analgesic in CRPS/RSD and bone pain of noncancer origin.

#### **Key words:**

Neuropathic pain.

Central nervous system.

Complex regional pain syndrome.

#### List of abbreviation

| ANS   | Autonomic nervous system              |  |
|-------|---------------------------------------|--|
| Ach   | Acetyl choline                        |  |
| AEDs  | Antiepileptic drugs                   |  |
| ATP   | Adinotriphostase                      |  |
| CNS   | Central nervous system                |  |
| CRPS  | Complex regional pain syndrome        |  |
| DEF   | Diisoproyleflurophosphate             |  |
| DSP   | Distal symmetric polyneropathy        |  |
| FDA   | Food and drug administration          |  |
| ICU   | Intensive care unit                   |  |
| IML   | Intermediolateral gray column         |  |
| ISAP  | International assocaiation for the    |  |
|       | study of pain                         |  |
| NE    | Norepinephrine                        |  |
| NMDA  | N-methyl D Aspartate                  |  |
| PAG   | Periaqueductal grey matter            |  |
| PNS   | Peipheral nervous system              |  |
| QSART | Qualitative sudmotor axon reflex test |  |
| RSD   | Reflex sympathetic dystrophy          |  |
| SIP   | Sypmapthically indepent pain          |  |
| SMP   | Sypmapthically mediated pain          |  |
| SNRI  | Serotonin noradrealine reuptake       |  |
|       | inhibitor                             |  |

| TCA                              | Tricyclic antidepressants         |  |
|----------------------------------|-----------------------------------|--|
| TENS                             | Transcutaneous electrical nerve   |  |
|                                  | stimulation                       |  |
| VIP                              | Vasoactive intestinal polypeptide |  |
| $\mathbf{V}\mathbf{M}\mathbf{M}$ | Ventromedian medulla              |  |
| WDR                              | Wide dynamic range                |  |

#### List of tables

| Table 2.1 | Shows some drugs and toxins that affect autonomic activity. |
|-----------|-------------------------------------------------------------|
| Table 4.1 | Etiology of complex regional pain syndrome                  |

#### **List of Figures**

| Figure     |                                                     | <u>Page</u> |
|------------|-----------------------------------------------------|-------------|
| Figure 2.1 | shows the Comparison of the Somatic and             | 6           |
|            | Autonomic Nervous Systems                           |             |
| Figure 2.2 | Shows Catecholamine metabolism in the               | 8           |
|            | sympathetic nervous system.                         |             |
| Figure 2.3 | Shows Autonomic nervous system.                     | 14          |
| Figure 2.4 | Shows Sympathetic nervous system. The black         | 15          |
|            | dashed lines represent postganglionic fibers in     |             |
|            | the gray rami leading from the sympathetic          |             |
|            | chains into spinal nerves for distribution to blood |             |
|            | vessels, sweat glands, and piloerector muscles.     |             |
| Figure 2.5 | Shows Nerve connections between the spinal          | 17          |
|            | cord, spinal nerves, sympathetic chain, and         |             |
|            | peripheral sympathetic nerves.                      |             |
| Figure 2.6 | shows Parasympathetic nervous system                | 19          |
| Figure 3.1 | shows pain pathway                                  | 23          |
| Figure 3.2 | Shows diagram demonstrating gate theory.            | 28          |
|            |                                                     |             |
| Figure 4.1 | Shows the different components of SMP and           | 45          |
|            | how these vary over time                            |             |

| Figure 5.1a | Stellate ganglia anatomy.                                                      | 59 |
|-------------|--------------------------------------------------------------------------------|----|
| Figure 5.1b | Stellate block: muscular, vascular, and neural anatomy                         | 60 |
| Figure 5.1c | Stellate block: surface and cross-sectional anatomy.                           | 61 |
| Figure 5.2a | shows Celiac plexus block: anatomy                                             | 63 |
| Figure 5.2b | Shows Celiac plexus block: parasagittal anatomy.                               | 64 |
| Figure 5.2c | Shows celiac plexus block: functional anatomy.                                 | 65 |
| Figure 5.2d | Shows celiac plexus block: cross-sectional anatomy.                            | 66 |
| Figure 5.3a | Shows Lumbar sympathetic block: cross-sectional anatomy.                       | 69 |
| Figure 5.3b | Shows Lumbar sympathetic block, surface (A) and cross-sectional (B) technique. | 70 |
| Figure 5.4  | shows hypogastric plexus                                                       | 72 |
| Figure 5.5  | Shows ganglion impar.                                                          | 74 |

#### **List of Content**

| ,              |                                    | Page |
|----------------|------------------------------------|------|
|                |                                    |      |
| Chapter 1      | Introduction& Aim of the work.     | 1    |
| Chapter 2      | Autonomic Nervous System           | 3    |
| Chapter 3      | Pain Physiology                    | 21   |
|                |                                    |      |
| Chapter 4      | Painful Neuropathies               | 34   |
| Chapter 5      | Management of Painful Neuropathies | 50   |
|                |                                    |      |
| References     |                                    | 79   |
| Summary        |                                    |      |
| Arabic Summary |                                    | 1    |
|                |                                    |      |

## Introduction & aim of the Work

#### **Chapter 1**

#### Introduction

The Autonomic Nervous System (ANS), especially sympathetic afferents and efferents, is frequently involved in various painful states; this is one of the most important portions of the nervous system to the physician involved in managing patients with acute and chronic pain. To properly manage the pain of angina pectoris, complex regional pain syndromes types I and II, pancreatitis, various peripheral vascular diseases, and other conditions, it is essential for the clinician to have thorough knowledge of the anatomy, physiology, and pharmacology of this system. For the anesthesiologist or other physician using nerve block therapy, it is also essential to have thorough knowledge and experience in techniques of blocking various portions of this system.<sup>1</sup>

ANS is composed of central and peripheral portions. The central portion consists of centers located in the cortex, hypothalamus, midbrain, and medulla and pathways located in the brainstem and spinal cord. The peripheral portion consists of afferent and efferent neurons, the axons of which are located outside of the central nervous system.

Autonomic nervous system is enrolled in different pain syndromes, the term sympathetically maintained pain (SMP) is commonly used by clinicians to describe patients who have Complex Regional Pain Syndrome (CRPS). However, all too frequently the term is used incorrectly. SMP is defined as "pain

that is maintained by sympathetic efferent innervation or by circulating catecholamines". Thus, SMP is not a clinical diagnosis, but rather an assumed pain mechanism. The term SMP should only be used in clinical practice to describe a patient's report of pain relief after a sympatholytic procedure (i.e., if a patient reports good pain relief after a sympathetic block, then that patient can be said to have SMP.<sup>2</sup>

It has become common practice in the world of pain medicine to temporarily block or destroy parts of the Sympathetic nervous system. However, the basis for this practice is obscure and uncertain. Few, if any, placebo controlled trials have established the efficacy of sympathetic neurolysis in the many conditions treated by this technique. Despite this, sympathetic neurolysis is often advocated as the first line of treatment in some pain states, facial blushing, and Raynaud's disease.<sup>3</sup>

#### The Aim of Work:

ANS may be affected by pain pathogenesis also ANS can be enrolled in different pain syndromes. The aim of work is to clarify the different pain syndrome in which the ANS may play a role in their pathogenesis Further more to focus in different blockades and its beneficial effect in pain management.

# Autonomic Nervous System