Is there a Role for Helicobacter Species in the Pathogenesis of

Hepatocellular Carcinoma in the Egyptian Patients

THESIS

SUBMITTED FOR PARTIAL FULLFILMENT OF MASTER DEGREE IN INTERNAL MEDICINE

BY
MOHAMED ELHOSSEN ABD ELHAMED
M.B.,B.Ch

SUPERVISED BY

DR. SAMIA MOHAMED SWAILAM AMER

ASSISTANT PROFESSOR OF INTERNAL MEDICINE AIN SHAMS UNIVERSITY

DR. AMANY THARWAT ABD ELRAHMAN

ASSISTANT PROFESSOR OF MICROBIOLOGY and IMMUNOLOGY

AIN SHAMS UNIVERSITY

DR. AHMED ALI MONES

ASSISTANT PROFESSOR OF INTERNAL MEDICINE
AIN SHAMS UNIVERSITY

AIN SHAMS UNIVERSITY 2007

Acknowledgements

First and Foremost all Thanks are due to "ALLAH" al mighty.

I wish to express my very grateful thanks and deepest gratitude to **Prof. Dr. Samia Mohamed Swailam**, Assistant professor of Internal medicine, Faculty of Medicine, Ain Shams University, for her continuous supervision, cooperation and support and for her valuable advice in the planning of the study.

Also my profound thanks and appreciation are presented to **Prof. Dr.** Amany Tharwat Abd Elrahman, Assistant professor of Microbiology and Immunology, Faculty of Medicine, Ain Shams University, for her support, cooperation and encouragement Throughout the whole course of this work.

Also my profound thanks and appreciation are presented to **Dr.Ahmed Ali Mones** Lecturer of Internal medicine Faculty of Medicine, Ain Shams University, for his support, cooperation and encouragement Throughout the whole course of this work.

My profound thanks for **Dr.Rasha Nasr** Lecturer of Microbiology and Immunology, Faculty of Medicine, Ain Shams University, for her supportand cooperation.

Last but not least I wish to thank all my Professors and my Colleagues for their helpful support and continuous encouragement.

List of contents

	Page
List of Abbreviations	
List of tables	III
List of figures	V
Introduction and aim of work	7
Chapter I: Hepatocellular carcinoma	
Introduction	. 1
Pathophysiology	3
Epidemiology	.5
Patient presentation	,
Diagnostic approaches8	
Staging and prognosis10	0
Treatment12	2
Other PrimaryLiverCancers1	.5
Chapter 2: Helicobacter Species	
Introduction1	.7
Helicobacter. pylori1	18
Growth requirement of H.pylori	20

Pathogenic properties	21
Epidemiology and Transmission	22
Routes of transmission	24
Carcinogenesis	29
H.pylori disease	31
Diagnosis of H.pylori	34
Treatment of H.pylori	35
Chapter 3:Enterohepatic Helicobacters	
Early morphological observation	38
H.hepaticus	40
Helicobacter cinaedi and Helicobacter fennelliae	44
H.canis	45
H.pametensis, H.pullorum and H.canadenesis	45
H.cholecystus.	46
H.rodentium	47
H.mesocricetorum.	47
H.typhlonicus	47
H.muridarum	48
H.flexispira	48
H.belis	50
H.trogontum	50
Chapter 4:Gastric Helicobacter Species	
Early morphological observation	42
H.mustelae	42
H.felis	55
H.bizzpzeronii and H.salomonis	56

H.heilmannii	56
H.acinonychis	59
H.nemestrinae	60
H.suncus.	60
Candidatus H.bovis	60
Patients and methods	62
Results	66
Discussion	77
Recommendations	82
Summary	83
References.	86
Arabic Summary	

List of Abbreviations

AFPAlpha fetoprotein AIDS.....Acquired immune deficiency syndrome C13......Carbon 13 C14.....Carbon 14 CEA......Carcino embryonic antigen CTComputerized tomography DNADeoxyribonucleic acid EHS.....Enterohepatic species FDA.....Food and drug administration FUFluorouracil HAV.....Hepatitis A virus HBV Hepatitis B virus HCC.....Hepatocellular carcinoma

HCVHepatitis C virus

HEV......Hepatitis E virus

H.pylori....Helicobacter pylori

IL.....Interleukin

MALT....Mucosa associated lymphoid tissue

MRI....Magnetic resonance image

PAF.....Platelet activating factor

PCR.....Polymerase chain reaction

RNA....Ribonucleic acid

TLR.....Toll like receptor

TNF.....Tumour necrosing factor

List of Tables

Tab. No.	Title	Page
Table 1	Presenting symptoms in Hepatocellular carcinoma	7
Table 2	Enterohepatic Helicobacter taxa	51
Table 3	Gastric Helicobacter taxa	61
Table 4.C	Comparison between both studied groups as regard age	
and sex		66
	Description of the presenting symptoms among the studied I	
		67
Table 6 C	Comparison between both studied groups as regard liver	
Profile		68
Table 7. (Comparison between both HCCand control groups as regard	l
	Comparison between both studied groups as regard Alfafeto-	
protein		69
regard so	Comparison between patients in control group as onographic results	
control g	Comparison between HCV and HBV in HCC group and group as regard presence of H. pylori	
Regard N	Modified giemsa stain	.73
control g Table 14	Comparison between patients of HCC group and group as regard results of Rapid urease test	74 75

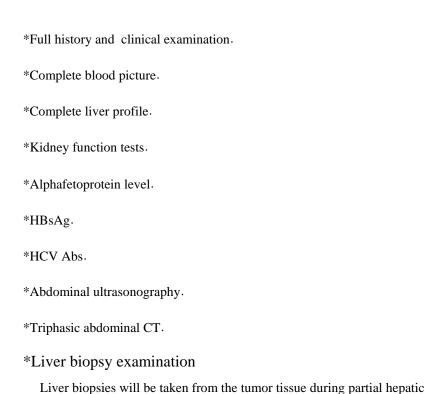
List of Figures

Fig. No. Title	Page
1.Histology of Hepatocellular carcinoma	4
2-C T scan of Hepatocellular	10
3- Helicobacter pylori (by electron microscope)	20
4- H.hepaticus transmission electron micrograph a, b,c	43
5 Comparison between both groups as regard viral hepatitis markers	71
6 CT scan tumour size	72
7 Comparison between patients of HCC group and control group as Regard Modified giemsa stain	
9 prevalence of Elisa Ab against H.pylori in HCC group	
compared to that in control group	75

INTRODUCTION

Infection by viruses and parasites can induce chronic inflammation that is a recognized risk factor for cancer (Avenaud et al., 2000). Hepatitis B and C viral infections, which induce chronic active hepatitis, are major risk factors for hepatocellular carcinoma (HCC). Infection of the liver by liver flukes also increases the risk of cancer (IARC, 1994).

Bacteria have been linked to cancer. The human gastric pathogen Helicobacter pylori induces a persistent infection that is considered to be a type I carcinogen because of its role in the development of gastric carcinoma (Forman et al., 1994; and Dunn et al., 1997) and gastric mucosa-associated lymphoid tissue lymphoma (Parsonnet et al., 1994). Other Helicobacter species have been identified in the intestinal tract, liver, and bile ducts of animals, and have been found to play a pathological role in enterohepatic diseases in animals and humans (Solnick and Schauer, 2001). Helicobacter hepaticus has been reported to be an agent that cause hepatic cancer in rodents. Recently, several separate research groups detected such Helicobacter organisms as H. pylori, H.pillorum, H. bilis, and Helicobacter species flexispira in the bile, gall bladder, or liver tissue of patients with primary sclerosing cholangitis, primary biliary cirrhosis, or primary liver carcinoma (Fox et al., 1998; and Wadstrom, 2000). These reports suggested that helicobacter organisms, including H. pylori, may play a role in the development of hepatobiliary diseases in humans, similar to the role that they play in animals.


HCC is one of the most common human cancers in the world. HCC ranks fifth among all cancers, and rate of incidence vary considerably by area or by country (Fan et al., 2002). Those regions where the risk for HCC is high are sub-Saharan Africa, China, and Southeast Asia (Kew , 2002). Although dietary exposure to aflatoxin B1 is one of the major risk factors for HCC, chronic infection with hepatitis B and C viruses are the most important risk factors for HCC worldwide (Fan et al.,2002) and in Egypt (Mohamed et al., 2000). Hereditary haemochromatosis and cirrhosis of almost any cause are also important risk factors (Fan et al.,2002). Recently, several reports suggested that Helicobacter species may play a role in the development of HCC (waldstrom,2000)

AIM OF THE WORK:

This study initiated to find out whether Helicobacter species could be identified in the hepatic tissue of Egyptian patients with primary liver carcinoma and may have role in the pathogenesis of this disease.

PATIENTS AND METHODS

Twenty patients presented to Ain Shams University Hospital with hepatic focal lesion and planned to have partial hepatic resection as a treatment for the tumor and another twenty patients (control) who will have liver biopsy for other pathology than HCC, will undergo the following:

resection and non-neoplastic tissue (control group). All specimens will be processed for:

Part of the liver biopsies will undergo rapid urease test to detect H. bacteria.

^{*}Routine histopathological examination.

^{*}Modified Giemsa stain to search for Helicobacter bacteria.

Hepatocellular carcinoma

Introduction

Hepatocellular cancer is one of the most common cancers in the world. It is also one of the most deadly, with a 5-year survival rate of less than 5% without treatment. Any chronic inflammatory liver disease has the potential to induce hepatocellular carcinoma, but the pathophysiologic process most commonly associated with the disease is cirrhosis, found in up to 80% of cases (*Flickinger et al., 1997*). Whether cirrhosis itself or the mechanism underlying cirrhosis is responsible for malignant transformation of hepatocytes is not known (*Flickinger et al., 1997*).

Certain viral, environmental, and hereditary causes of cirrhosis have a strong correlation with hepatocellular carcinoma. Chronic viral hepatitis as a cause of cirrhosis and hepatocellular carcinoma is well known. Hepatitis B virus infection is the leading cause of chronic liver disease and hepatocellular carcinoma around the world. (*VanDamme et al.*, 1997). In the United States, hepatitis B virus infects about 1.2 million people and hepatitis C virus about 4 million people (*Gross et al.*, 1998). Hepatitis C virus RNA is found in about 65% of patients who test negative for hepatitis B surface antigen at diagnosis of their hepatocellular carcinoma (*Dana et al.*, 1994).

Alcohol use is also a common cause of cirrhosis, which can indirectly lead to hepatocellular carcinoma. However, a direct carcinogenic effect of alcohol on the liver has not been proved (*Akriviadis et al.*, 1998)