

Ain Shams University
Faculty of Engineering
Electrical Power and Machines Department

Electrical Energy Management in Power Delivery Systems Using Virtual Power Plant Concept

Ph.D. thesis

By:

Eng. Mahmoud Mohamed Othman Ahmed

A thesis submitted to the Faculty of Engineering-Ain Shams University in partial fulfillments of the requirements for the Ph.D. degree in Electrical Power and Machines Engineering

Supervised by:

Prof. Dr. Almoataz Youssef Abdelaziz

Electric Power and Machines Department Faculty of Engineering, Ain shams University

Prof. Dr. Yasser Gamal El-Din Hegazy

Electric Power and Machines Department Faculty of Engineering, Ain shams University

Associate Prof. Dr. Walid Seif El-Kattam

Electric Power and Machines Department Faculty of Engineering, Ain shams University

Cairo 2014

Approval Sheet

For the Ph.D. thesis entitled

Electrical Energy Management in Power Delivery Systems Using Virtual Power Plant Concept

By:

Eng. Mahmoud Mohamed Othman Ahmed

A thesis submitted to the Faculty of Engineering, Ain Shams University in partial fulfillment of the requirements for the Ph.D. degree in Electrical Power and Machines Engineering

Supervisors Committee

Name, title and affiliation

Signature

Prof. Dr. Almoataz Youssef Abdelaziz

Electrical power & Machines Department Faculty of Engineering Ain Shams University

Prof. Dr. Yasser Gamal El-Din Hegazy

Electrical power & Machines Department Faculty of Engineering Ain Shams University

Associate Prof. Dr. Walid Seif El-Kattam

Electric Power and Machines Department Faculty of Engineering, Ain shams University

Approval Sheet

For the Ph.D. thesis entitled

Electrical Energy Management in Power Delivery Systems Using Virtual Power Plant Concept

By:

Eng. Mahmoud Mohamed Othman Ahmed

A thesis submitted to the Faculty of Engineering, Ain Shams University in partial fulfillment of the requirements for the Ph.D. degree in Electrical Power and Machines Engineering

Examiners Committee

Name, title and affiliation

Signature

Prof. Dr. Zeinab Hanem Mohamed Othman

Electrical power & Machines Department Faculty of Engineering, Cairo University

Prof. Dr. Hesham Kamel Abd El-latif Temraz

Electrical power & Machines Department Faculty of Engineering, Ain Shams University

Prof. Dr. Almoataz Youssef Abdelaziz

Electrical power & Machines Department Faculty of Engineering, Ain Shams University

Prof. Dr. Yasser Gamal El-Din Hegazy

Electrical power & Machines Department Faculty of Engineering, Ain Shams University

Statement

This thesis is submitted to the Faculty of Engineering, Ain Shams University in Partial Fulfillment of the requirements for Ph.D. degree in Electrical Power and Machines Engineering

The included work in this thesis has been carried out by the author at the Electrical Power and Machines Department, Ain Shams University. No part of this thesis has been submitted for a degree or a qualification at any other university or institution.

Name: Mahmoud Mohamed Othman Ahmed

Signature:

Date: 29/12/2014

Acknowledgment

First of all, I wish to offer my great thanks to Allah and I hope that God would bless this research.

Although my next few words couldn't express my deep feelings and respect towards my supervisors, but it may at least indicates some of those feelings.

I would like to present my deep thanks to Professor Dr. **Almoataz Y. Abdelaziz** for his excellent supervision, encouragement and endless support during the research period.

I owe special thanks to Professor Dr. **Yasser G. Hegazy** for his continuous guidance, valuable comments, and fruitful criticism during the research period.

I would like to present my deep thanks to Assoc. Professor Dr. Walid Seif El-Kattam for his support during the research period.

Dedication

This work is dedicated to my late brother, father, mother, wife, sisters and my lovely son.

I would like to thank and appreciate my **wife** for her support and patience.

ABSTRACT

The electricity market liberalization allows proliferated integration of distributed energy resources (DER) that include distributed generation (DG) and controllable loads with the distribution network. However, increasing DER penetration without amity between them may lead to undesired impacts. In addition, relying on renewable energy based DGs may cause unreliable operation of the power system due to their stochastic nature. Thus, energy storage elements are needed to bridge the gap between the stochastic generation and demand.

In order to control and manage the operation of the distributed energy resources and the energy storage elements, the virtual power plant (VPP) concept is introduced. VPP can be defined as "A concourse of dispatchable and non dispatchable DGs, energy storage elements and controllable loads accompanied by information and communication technologies to form a single imaginary power plant that plans, monitors the operation, and coordinates the power flows between its component to minimize the generation costs, minimize the production of green house gases, maximize the profits, and enhance the trade inside the electricity market".

This dissertation utilizes the VPP concept for managing the electrical energy in the power delivery networks. The work presented in this thesis can be grouped into three phases; the first

phase includes the studies concerned with the optimal sizing and siting of DG units. The second phase aims to support the renewable based DG units operation via the optimal sizing of the energy storage elements. While, the third phase proposes load control study in order to manage the electrical energy not only in the distribution network but also in exchange with the main grid.

In the first phase, two novel optimization techniques, named supervised Big-Bang Big-Crunch and supervised Firefly, have been developed and implemented in order to accurately select the optimal size and location of voltage controlled DG units in order to minimize system power loss. The developed techniques have been applied to balanced and unbalanced distribution feeders and their results have been compared to published results for validation of the proposed techniques. Several related studies have been presented include optimal sizing and siting of DG units for daily energy losses minimization, multiobjective performance index minimization through optimal choice of capacity and location of DG units, and optimal planning of DG units for achieving a planned power loss. In addition, a novel strategy for modeling renewable energy based DG units has been presented. The proposed strategy, that utilizes diagonal band Copula and Monte Carlo methods, is capable of considering the stochastic nature of the renewable sources as well as the dependence between the renewable sources and the system demand. The results of the modeling strategy have been integrated with the supervised Big-Bang Big-Crunch optimization technique for optimal allocation of renewable based DG units with and without dispatchable DGs.

In the second phase, an innovative algorithm for determining the optimal size and operation schedule of energy storage elements has been introduced. The proposed algorithm allows the distribution system operator to choose the optimal charging and discharging rates and optimal capacity of the energy storage element connected with the renewable energy based DG unit. Through the introduced algorithm, the energy storage element manages the renewable based DG power schedule in order to minimize the annual energy losses.

In the third phase, a Big-Bang Big-Crunch based optimization algorithm is developed for determining the optimal load control schedule. All of the aforementioned optimization techniques are integrated with the load control technique for the realization of the VPP concept. Two studies are performed to manage the electrical energy using the VPP concept; the first aims to minimize the energy purchased from main grid and the second minimizes the cost of energy purchased from main grid by enhancing the energy trade.

The presented studies and the subsequent results and discussions emphasize the prominence of the VPP concept in

handling the electrical energy management problem as it is used to ensure that the power system is operated in an optimized and secure way taking technical constraints into account.

TABLE OF CONTENTS

Chapter (1) INTRODUCTION	page 1
1.1 Deregulated power systems	. 1
1.1.1 Vertical power systems	1
1.1.2 Restructure of power systems	3
1.2 Active distribution networks	4
1.3 Virtual power plant versus microgrid	6
1.4 Thesis motivations	. 8
1.5 Thesis objectives	10
1.6 Overview and thesis organization	10
(2) VIRTUAL POWER PLANT (VPP): THE FUTURE OF	7
POWER DELIVERY SYSTEMS	13
2.1 Introduction	13
2.2 VPP definitions	13
2.3 VPP components and model	15
2.3.1 Distributed energy resources (DER)	15
2.3.2 Energy Storage Systems (ESS)	17
2.3.3 Information and Communication systems	18
2.4 VPP framework	19
2.4.1 Technical Virtual Power Plant (TVPP)	20
2.4.2 Commercial Virtual power plant (CVPP)	21
2.5 VPP Optimization	23
2.5.1 Optimal sizing and placement of DGs	27
2.5.1.1 DG optimization according to methodology	. 27

2.5.1.1.1 Analytical methods	28
2.5.1.1.2 Numerical methods	29
2.5.1.1.3 Heuristic methods	30
2.5.1.2 DG optimization according to objective	32
2.5.2 Optimal sizing and placement of ESEs	35
2.5.3 Optimal load controlling schedules	39
2.6 Summary	42
(3) INTEGRATION OF DISTRIBUTED GENERATORS INTO	
DISTRIBUTION NETWORKS	45
3.1 Introduction	45
3.2 Problem statement	45
3.3 Components' models	47
3.3.1 Distribution network line model	47
3.3.2 Three-phase distribution transformer model	48
3.3.3 Load models	48
3.3.3.1 Constant real and reactive power loads	48
3.3.3.2 Constant current load	49
3.3.3.3 Constant impedance load	49
3.3.4 Shunt capacitors model	50
3.3.5 Distributed generator model	50
3.4 Test feeders	54
3.4.1 The IEEE 33 bus and the IEEE 69 bus feeders	54
3.4.2 The IEEE 37 nodes and the IEEE 123 nodes feeders	55
3.5 Unbalanced load flow analysis	59
3.6 Validation of the load flow results	61
3.6.1 IEEE 33 bus feeder results	61
3.6.2 IEEE 69 bus feeder results	63
3.6.3 IEEE 37 nodes feeder results	65

3.6.4 IEEE 123 nodes feeder results	66
3.7 Summary of the unbalanced load flow results	67
3.8 Integration of DG with the unbalanced load flow	68
3.9 Validation of DG integration with network	71
3.10 Summary	72
(4) OPTIMAL SIZING AND SITING OF DISPATCHABLE	
DISTRIBUTED GENERATORS	73
4.1 Introduction	73
4.2 Constrained optimization problem	73
4.3 Firefly optimization technique	78
4.3.1 Traditional firefly method	78
4.3.2 Supervised firefly method	80
4.3.2.1 Adaptive tuning of the FA parameters	81
4.3.2.2 Updating equations of the supervised FA	82
4.3.2.3 Algorithm of the supervised FA	82
4.4 Optimal sizing and siting of one DG using FA	86
4.4.1 Validation of the supervised FA algorithm	86
4.4.2 Constrained optimization problem solving using	
supervised FA method	89
4.4.3 Traditional FA VS supervised FA algorithm	91
4.5 Big Bang- Big Crunch (BB-BC) optimization technique	93
4.5.1 Traditional BB-BC method	93
4.5.2 Supervised BB-BC method	95
4.6 Optimal sizing and siting of one DG using BB-BC method	97
4.6.1 Validation of the supervised BB-BC algorithm	97
4.6.2 Constrained optimization problem solving using	
supervised BB-BC method	100
4.6.3 Traditional FA VS supervised BB-BC algorithm	101

4.7 Supervised BB-BC Vs supervised FA	10
4.8 Optimal sizing and siting of two DGs using supervised BB-	
BC method	10
4.9 Optimal location and scheduling of one DG for energy loss	
minimization	10
4.9.1 DG connected to the IEEE 37 nodes feeder	10
4.9.2 DG connected to the IEEE 33 bus feeder	10
4.10 A multiobjective optimization for optimal sizing and	
placement of DG	11
4.10.1 Performance indices and the multiobjective index	11
4.10.2 Optimal sizing and siting of DG connected to IEEE	
123-nodes feeder for individual performance indices	
optimization	1
4.10.3 DG connected to IEEE 123-nodes feeder for	1.
multiobjective performance index optimization	1.
4.10.4 Optimal location and daily power schedule of DG	
connected to IEEE 123-nodes feeder for multiobjective	
performance index optimization	1
4.11 Optimal Planning of Distributed Generators for specified	
power loss	12
4.11.1 DG optimal planning for power loss reduction using	
supervised BB-BC	12
4.11.2 Optimal DG location and power for 10 % reduction	
of system power loss	12
4.11.3 Optimal DG location and power for different	
specified power loss	1.
4.12 Summary	1′

(5) MODELING OF STOCHASTICALLY DEPENDENT	
RENEWABLE ENERGY SOURCES	127
5.1 Introduction	127
5.2 Literature review on modeling techniques	128
5.3 Role of stochastic dependence	130
5.3.1 Importance of considering stochastic dependence	130
5.3.2 Illustrative example	131
5.3.3 Measurement of stochastic dependence	135
5.3.3.1 Cumulative distribution function transformation	136
5.3.3.2 Rank correlation coefficient	139
5.3.4 Copula	140
5.4 Modeling strategy	140
5.4.1 Historical Data Processing	141
5.4.2 Solar irradiance, wind speed and load CDFs	143
5.4.3 Modeling of stochastic dependence using diagonal	
band Copula	144
5.4.4 Calculation of the simulated PV and wind powers	147
5.4.5 Sequential Monte Carlo method	148
5.5 Results and discussions	149
5.5.1 Selection of the appropriate CDFs	149
5.5.2 Model of renewable energy sources and system	
demand	152
5.5.2.1 Simulated Vs actual CDFs	152
5.5.2.2 Rank correlation results	157
5.5.2.3 Simulated power of wind turbines	157

5.5.2.4 Simulated power of photovoltaic array	
0.0. <u>-</u> 22 po 02 proces / 02	158
5.5.2.5 Simulated power of the system demand	159
5.5.3 Comparative study	160
5.5.3.1 Validation of the simulated data	160
5.5.3.2 Validation of the model	163
5.6 Summary	165
(6) OPTIMAL OPERATION OF RENEWABLE BASED	
DISTRIBUTED GENERATORS AND ENERGY STORAGE	
ELEMENTS	167
6.1 Introduction	167
6.2 Optimal allocation of stochastically dependent renewable	
energy based distributed generators	168
6.2.1 Problem Statement	168
6.2.2 Methodology	169
6.2.2.1 Optimization problem including renewable and	
dispatchable DGs	169
6.2.2.2 Renewable DGs only case	171
6.2.3 Optimal placement of renewable DGs	172
6.2.4 Optimal placement of renewable and dispatchable DGs	174
6.2.4.1 Optimal placement of wind-based DG with	
dispatchable DG	175
6.2.4.2 Optimal placement of photovoltaic DG with	
dispatchable DG	178
6.3 Ontimal Sizing of Energy Storing Elements (ESE)	180