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Summary:
This thesis presents a numerical computation performed to investigate the convective

heat transfer characteristics of a gas turbine can combustor under non-reacting flow
conditions in a Reynolds number range between 50,000 and 600,000 with a characteristic
swirl number of 0.7. In this thesis, a CFD package was used to predict the heat transfer and
flow characteristics in combustion chamber. It is observed that the flow field in the
combustor is characterized by an expanding swirling flow, which impinges on the liner
wall close to the inlet of the combustor. The impinging shear layer is responsible for the
peak location of heat transfer augmentation. It is observed that as Reynolds number
increases from 50,000 to 600,000, the peak heat transfer augmentation ratio (compared
with fully developed pipe flow) reduces from 10.5 to 2.7. Additionally, the peak location
does not change with Reynolds number since the flow structure in the combustor is also a

function of the swirl number.
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