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Summary: 

  This thesis presents a numerical computation performed to investigate the convective 

heat transfer characteristics of a gas turbine can combustor under non-reacting flow 

conditions in a Reynolds number range between 50,000 and 600,000 with a characteristic 

swirl number of 0.7. In this thesis, a CFD package was used to predict the heat transfer and 

flow characteristics in combustion chamber. It is observed that the flow field in the 

combustor is characterized by an expanding swirling flow, which impinges on the liner 

wall close to the inlet of the combustor. The impinging shear layer is responsible for the 

peak location of heat transfer augmentation. It is observed that as Reynolds number 

increases from 50,000 to 600,000, the peak heat transfer augmentation ratio (compared 

with fully developed pipe flow) reduces from 10.5 to 2.7. Additionally, the peak location 

does not change with Reynolds number since the flow structure in the combustor is also a 

function of the swirl number. 
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