HEAT TRANSFER AND FLOW CHARACTERISTICS IN A GAS TURBINE CAN COMBUSTOR: TURBULENT INTERACTION

By Eng. Saad Ahmed Mohammed

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the Requirements for the Degree of
MASTER OF SCIENCE
In
MECHANICAL POWER ENGINEERING

HEAT TRANSFER AND FLOW CHARACTERISTICS IN A GAS TURBINE CAN COMBUSTOR: TURBULENT INTERACTION

By Eng. Saad Ahmed Mohammed

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the Requirements for the Degree of
MASTER OF SCIENCE
In
MECHANICAL POWER ENGINEERING

Under Supervision of

Prof. Dr. Essam E. Khalil Mechanical Power Engineering Department Faculty of Engineering

Dr. Hatem Omar Haridy Mechanical Power Engineering Dep. Faculty of Engineering Dr. Esmail Mohamed Ali Mechanical Power Engineering Dep. Faculty of Engineering

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2015

HEAT TRANSFER AND FLOW CHARACTERISTICS IN A GAS TURBINE CAN COMBUSTOR: TURBULENT INTERACTION

By Eng. Saad Ahmed Mohammed

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the Requirements for the Degree of
MASTER OF SCIENCE
In
MECHANICAL POWER ENGINEERING

Approved by the Examining Committee

Prof. Dr. Essam E. Khalil Hassan Khalil (Thesis Advisor and Member) Mechanical Power Engineering Dept., Faculty of Engineering, Cairo University

Prof. Dr. Mahmoud Ahmed Fouad (Member)
Mechanical Power Engineering Dept., Faculty of Engineering, Cairo University

Prof. Dr. Osama Ezzat Abdel-Latif (Member)
Mechanical Power Engineering Dept., Shobra Faculty of Engineering, Benha University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA – EGYPT
2015

Engineer: Saad Ahmed Mohammed

Date of Birth: 23 / 11 / 1980

Nationality: Iraqi

E-mail: sa_mancy@yahoo.com Phone: 0096407702889152

Address: Samara, Salah Al-Deen , Iraq

Registration Date: 01 / 03 / 2013

Awarding Date: / /

Degree: Master of Science

Department: Mechanical Power Engineering

Supervisors: Prof. Dr. Essam E. Khalil Hassan Khalil

Dr. Hatem Omer Haridy Kayed Dr. Esmail Mohamed Ali El-Bialy

Examiners: Prof. Dr. Essam E. Khalil Hassan Khalil

Prof. Dr. Mahmoud Ahmed Fouad Prof. Dr. Osama Ezzat Abdel-Latif

Key Words: Heat Transfer, Turbulent. CFD, Can Combustor, Swirl Number **Summary:**

This thesis presents a numerical computation performed to investigate the convective heat transfer characteristics of a gas turbine can combustor under non-reacting flow conditions in a Reynolds number range between 50,000 and 600,000 with a characteristic swirl number of 0.7. In this thesis, a CFD package was used to predict the heat transfer and flow characteristics in combustion chamber. It is observed that the flow field in the combustor is characterized by an expanding swirling flow, which impinges on the liner wall close to the inlet of the combustor. The impinging shear layer is responsible for the peak location of heat transfer augmentation. It is observed that as Reynolds number increases from 50,000 to 600,000, the peak heat transfer augmentation ratio (compared with fully developed pipe flow) reduces from 10.5 to 2.7. Additionally, the peak location does not change with Reynolds number since the flow structure in the combustor is also a function of the swirl number.

ACKNOWLEDGEMENT

I hereby would like to express my deep gratitude and thanks to Prof. Dr. Essam E. Khalil and Dr. Hatem Haridi and Dr. Ismail Mohammed for their support, continuous encouragement and distinctive supervision throughout the course of this work.

Also, I cannot express; in words; my thanks and gratitude to my family especially my **mother** and my **father** and my **wife** for their great and continuous help and support they provided me to finish this work in a suitable form.

Nevertheless, I cannot forget the support of my colleagues in the Mechanical Power Engineering department as well as from my Professors for their encouragement and concern throughout the scope of the work.

TABLE OF CONTENTS

ACKNOWLEDGEMENT	i
TABLE OF CONTENTS	ii
LIST OF TABLES	vi
LIST OF FIGURES	vii
SYMBOLS AND ABBREVIATIONS	XV
ABSTRACT	XX
CHAPTER 1 INTRODUCTION	1
1.1 General	1
1.2 Combustion Chamber	1
1.3 Liner Wall Cooling Systems	3
1.4 Turbulent swirler flow	4
1.5 Swirler Aerodynamics	4
1.6 Swirl Number	6
1.7 Present Work	6
CHAPTER 2 LITERATURE SURVAY	7
2.1 General	7
2.2 Previous works	7
2.3 Summary and Objectives of the present work	25
CHAPTER 3 MATHEMATICAL MODELING	26
3.1 Introduction	26

.2 Governing Equations of Motion for a Turbulent Flow	
3.2.1 Conservation equations	28
3.2.2 Turbulent eddy viscosity closure model	28
3.2.3 Transformation of transport equations	30
3.2.4 Boundary conditions	30
.3 Turbulence models	
3.3.1 Introduction	30
3.3.2 Choosing a Turbulence Model	32
3.3.3 Reynolds Averaging	33
3.3.4 The k - ε Models	34
3.3.4.1 The RNG k-ε model	35
3.4 Heat Transfer Modes	37
3.4.1 Introduction	37
3.4.2 Convection	37
3.4.3 Similarity Analysis	38
3.5 Near-Wall Treatments for Wall-Bounded Turbulent Flows	38
3.5.1 Wall functions	41
3.5.1.1 Non-Equilibrium Wall Functions	41
3.5.1.2 Enhanced Wall Treatment	42

	3.6 Case Geometry	43
	3.7 Computational Methodology	45
	3.8 Mesh Generation	46
	3.9 Numerical Calculation	47
	3.10 Boundary Condition	48
CI	HAPTER 4 VALIDATION AND COMPUTATIONAL RESULTS	49
	4.1 Introduction	49
	4.2 Grid independency study	49
	4.3 Validation of Computational Model	50
	4.4 Effect of Reynolds Number	52
	4.4.1 Effect of Reynolds Number on Nusselt Number Augmentation	52
	4.4.2 Effect of Reynolds Number on Heat Transfer Coefficient	54
	4.4.3 Effect of Reynolds Number on Combustor Wall Temperature	57
	4.4.4 Effect of Reynolds Number on Flow- Filed characteristics (Axial Velocity) -(Axial Direction)	60
	4.4.4.1 Effect of Different Reynolds number on Axial Velocity along center inlet air	61
	4.4.5 Effect of Reynolds Number on Flow- Filed characteristics (Axial Velocity) -(Radial Direction)	66
	4.4.5.1 Effect of Reynolds Number (Re=50000) on Flow- Filed characteristics	66
	4.4.5.2 Effect of Reynolds Number (Re=80000) on Flow- Filed characteristics	70
	4.4.5.3 Effect of Reynolds Number (Re=500000) on Flow- Filed characteristics	73

4.5 Effect of different swirl number	76
4.5.1 Effect of different swirl number on Wall temperature	76
4.5.2 Effect of different swirl number on Surface heat transfer coefficient	79
4.5.3 Effect of different swirl number on Surface Nusselt number augmentation	82
4.5.4 Effect of Swirl Number on Flow-Filed characteristics (Axial, Radial & Tangential Velocity)	83
4.5.4.1 Effect of Swirl Number on Axial Velocity along Center air inlet & liner wall	83
4.5.4.2 Effect of Swirl Number on Radial Velocity along Center air inlet & liner wall	89
4.5.4.3 Effect of Swirl Number on Axial, Radial & Tangential Velocities along radial position	93
CHAPTER 5 CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK	
5.1 Summery	103
5.2 Conclusions of the Present Work	103
5.2.1 Effect of Reynolds Number	103
5.2.2 Effect of swirl Number	104
5.3 Proposals for Further Future Work Study	104
REFERENCES	106

LIST OF TABLES

Table	Description	Page
Table (3-1)	Geometry of experimental	43
Table (3-2)	Numerical calculation summary	47
Table (3-3)	Boundary conditions	48

LIST OF FIGUERS

Figure	Description	Page
1.1	Combustion Chamber	2
1.2	Combustor liner wall film cooling scheme	3
1.3	Flow recirculation induced by strong swirl	5
1.4	Two main swirler types	5
2.1	1Turbulence model comparison and its effect on predicted wall heat flux (a) case1,(b) case2	8
2.2	Profiles of axial, radial and tangential velocity in the highest density mesh for four turbulence models	8
2.3	Experimental test setup (dimensions in centimeters)	9
2.4	Diagram showing the locations of the radial cross sectional planes measured in PIV experiments	10
2.5	Radial velocity distributions produced by the axial swirler (top row) and the radial swirler (bottom row) at radial cross-sectional planes at X/D locations of 2 (far left), 3 (middle left), 5 (middle right), and 10 (far right) at Re = 50,000. (scale in m/s)	10
2.6	Radial velocity distributions produced by the axial swirler (top row) and the radial swirler (bottom row) at radial cross-sectional planes at X/D locations of 2 (far left), 3 (middle left), 5 (middle right), and 10 (far right) at Re = 80,000. (scale in m/s)	10
2.7	Overview of Experimental Setup	11
2.8	Comparison of Heat Transfer Coefficient Distribution for Re=500000 and 662000	11
2.9	Comparing convex and concave surface heat transfer enhancement along the combustor liner	12
2.10	1-D heat transfer coefficient distribution along the liner wall for Re=50000 and Re=80000	13

2.11	Pressure distribution along the liner wall	13
2.12	flow enclosure and co-axial burner	14
2.13	Predicted contours of constant velocity for swirl number 0.0 and 0.52	14
	for isothermal and combusting flow	
2.14	measured and calculated mean gas temperature	15
2.15	A schematic plot of the experimental rig	16
2.16	Instantaneous streamlines of the high swirl case	16
2.17	Changeable vane swirler with the low swirl (blade angle of 30°) (a) and with the intensive swirl (blade angle of 55°); schematic for arrangement of the swirler within the nozzle block (c)	17
2.18	Photograph of combustion modes of the lean methane—air mixture for cases of intensive (a) and low (b) flow swirls	17
2.19	Schematic of the 2-D computational domain	18
2.20	Contours diagram of (a) axial velocity, (b) tangential velocity, (c) temperature, (d) mole fraction CO2, (e) mole fraction O2 (f) mole fraction CO	18
2.21	Measured and calculated centreline distribution of temperature fuel and oxygen in the furnace of Bilger	21
2.22	Annular combustor geometry	22
2.23	shows a combustor and the main airflows within	23
2.24	shows components of the heat flux in an element of the liner wall	23
3.1	Flow chart CFD analysis process	27
3.2	Subdivisions of the near-wall region	39
3.3	Near-Wall Treatments in ANSYS Fluent	40
3.4	Steady-State experiment setup	44
3.5	Experimental setup(all dimensions are in centimeters)	44
3.6	Schematics of the experimental setup Swirler & combustor	44

3.7	3D Combustion chamber	45
3.8	3D Computational domain	45
3.9	3D View Mesh Computational domain	46
3.10	3D Veiw Mesh Computational domain and Front View Mesh	46
4.1	Grid independency study for Nu augmentation at (swirl number 0.7 and Re=50000) at different mesh size.	49
4.2	Comparison of numerical predictions using different turbulence models with Experiment at Re=50,000; S=0.7	50
4.3	Nusselt number augmentation for Re=50,000 along the liner wall	51
4.4	Nusselt number augmentation for Re=80,000 along the liner wall	51
4.5	Effect of Reynolds number (50,000-600,000) on liner wall Nu augmentation	52
4.6	Variation of Peak Nusselt number augmentation with Reynolds number	53
4.7	Surface Heat Transfer Coefficient along the liner wall (W/m^2 .K) Re $50,000 - 60,000$	54
4.8	Variation of Peak Surface Heat Transfer Coefficient with Reynolds number (50,000-600,000) (W/m².K)	54
4.9	Contours Surface heat transfer coefficient along liner wall ($W/m^2.K$) ($Re=50,000$)	55
4.10	Contours Surface heat transfer coefficient along liner wall ($W/m^2.K$) ($Re=80,000$)	55
4.11	Contours surface heat transfer coefficient along liner wall $(W/m^2.K)$ Re=200,000	55
4.12	Contours Surface heat transfer coefficient along liner wall $(W/m^2.K)$ Re=400,000	56
4.13	Contours Surface heat transfer coefficient along liner wall $(W/m^2.K)$ Re=500,000	56
4.14	·	56

4.15	Wall Temperature along the liner wall (K) for Re (50,000 - 600,000)	57
4.16	Variation of Peak wall Temperature (K) with Re (50,000-600,000)	57
4.17	Contours of Wall Temperature a long liner wall (K) Re=50,000	58
4.18	Contours of Wall Temperature a long liner wall (K) Re=80,000	58
4.19	Contours of Wall Temperature a long liner wall (K) Re=200,000	58
4.20	Contours of Wall Temperature a long liner wall (K) Re=400,000	59
4.21	Contours of Wall Temperature a long liner wall (K) Re=500,000	59
4.22	Contours of Wall Temperature a long liner wall (K) Re=600,000	59
4.23	Position of Two lines along center combustor, center air inlet and along liner wall combustor	60
4.24	Axial velocity along center of air inlet (m/s)	61
4.25	Axial velocity along liner wall combustor (m/s)	61
4.26	Peak of Axial velocity (m/s) with different Reynolds number at Two	62
	axial lines	
4.27	Contours of Axial velocity distributions along the center axial plane	63
	of the combustor at Re (50,000 -500,000) (scale in m/s)	
4.28	Streamline of Axial velocity distributions along the center axial	64
	plane of the combustor at Re (50,000 -500,000) (scale in m/s)	
4.29	Axial vorticity isocontour in combustor colored with axial velocity	65
	for Re=50,000 with S=0.7	
4.30	Five radial cross-sectional planes ($X/D=0$, 0.3, 0.5, 1.0 and 2.0)	66
4.31	Normalized axial velocity profiles for radial traverse at X/D=0 at	67
	Re=50000	
4.32	Normalized axial velocity profiles for radial traverse at X/D=0.5 at	67
	Re=50000	
4.33	Normalized axial velocity profiles for radial traverse at $X/D=1.0$, 2.0	67
	at Re=50000	

- 4.34 3D Contours of Axial velocity at different radial traverse at X/D= 0, 68 0.3, 0.5, 1.0, 2.0 at Re=50000 (scale in m/s)
- 4.35 3D Vectors of Axial velocity at different radial traverse at X/D= 68 0,0.3,0.5,1.0 ,2.0 at Re=50000 (scale in m/s)
- 4.36 2D Contours of Axial velocity at different radial traverse at X/D= 69 0,0.3,0.5,1.0 ,2.0 at Re=50000 (scale in m/s)
- 4.37 2D Vectors of Axial velocity at different radial traverse at X/D= 69 0,0.3,0.5,1.0 ,2.0 at Re=50000 (scale in m/s)
- 4.38 Normalized axial velocity profiles for radial traverse at X/D=0 ,0.3 70 ,0.5 , 1.0 , 2.0 at Re=80000
- 4.39 3D Contours of Axial velocity at different radial traverse at X/D= 71 0,0.3,0.5,1.0 ,2.0 at Re=80000 (scale in m/s)
- 4.40 3D Vectors of Axial velocity at different radial traverse at X/D= 71 0,0.3,0.5,1.0,2.0 at Re=80000 (scale in m/s)
- 4.41 2D Contours of Axial velocity at different radial traverse at X/D= 72 0,0.3,0.5,1.0,2.0 at Re=80000 (scale in m/s)
- 4.42 2D Vectors of Axial velocity at different radial traverse at X/D= 72 0,0.3,0.5,1.0,2.0 at Re=80000 (scale in m/s)
- 4.43 Normalized axial velocity profiles for radial traverse at X/D=0 ,0.3 73 ,0.5 , 1.0 , 2.0 at Re=500000
- 4.44 3D Contours of Axial velocity at different radial traverse at X/D= 74 0,0.3,0.5,1.0,2.0 at Re=500000 (scale in m/s)
- 4.45 3D Vectors of Axial velocity at different radial traverse at X/D= 74 0,0.3,0.5,1.0,2.0 at Re=500000 (scale in m/s)
- 4.46 2D Contours of Axial velocity at different radial traverse at X/D= 75 0,0.3,0.5,1.0,2.0 at Re=500000 (scale in m/s)
- 4.47 2D Vectors of Axial velocity at different radial traverse at X/D= 75 0,0.3,0.5,1.0,2.0 at Re=500000 (scale in m/s)
- 4.48 Temperature along the liner wall (K) for Re (50,000) at S= (0.5 1.0) 76
- 4.49 Profile Max. Wall Temp. along the liner wall (K) with S = (0.5 1.0) 76