بِسْمِ اللهِ الرَّحْمنِ الرَّحِيمِ

"إِنَّ فِي خَلْقِ السَّمَاوَاتِ وَالْأَرْضِ وَاخْتِلَافِ اللَّيْلِ وَالنَّهَارِ اللَّيْلِ وَالنَّهَارِ لَإِنَّ فِي خَلْقِ السَّمَاوَاتِ لِأُولِي الْأَلْبَابِ (190)" لَآيَاتٍ لِّأُولِي الْأَلْبَابِ (190)"

حدَقَ الله العَظِيم

(ال عمران:190)

Wastewater Treatment Using Microorganisms Resistant to Heavy Metal and Isolated from Tannery Effluent

A Thesis

"Submitted for the degree of Master of Science as a partial fulfillment for requirements of the Master of Science"

In

Inorganic and Analytical Chemistry

Submitted by

Taher Attiya Aboelazm Mohammed

B.Sc. in Chemistry (2008) – Faculty of Science - Ain shams University

Under Supervision of

Prof. Mostafa M. H. Khalil

Professor of Inorganic Chemistry
Faculty of Science
Ain Shams University

Prof. Reda A.I. Abou Shanab

Professor of Environmental Biotechnology Genetic Engineering and Biotechnology Research Institute, City of Scientific Research & Technology Applications, Alexandria

Dr. Abdel-Nabi Mohammed Salem

Lecturer of Inorganic Chemistry
Faculty of Science
Ain Shams University

Chemistry Department
Faculty of Science
Ain Shams University
2017

Declaration

I declare that this thesis has been composed and the work recorded here has been done by me.

It has not been submitted for any other degree at this or any other university.

Taher *S*ittiya *Si*boelazm

Item No.	Subject	Page
	Acknowledgement	I
	Abstract	III
	List of Abbreviations	IV
	List of Tables	V
	List of Figures	VI
	CHAPTER I	
	Introduction	1
	Aim of the work	3
I.	Review of Literature	4
I.1.	Water pollution	4
I.1.1.	Sources of wastewater	4
I.1.2.	Tannery effluents	5
I.1.3.	Wastewater Treatment methods	8
I.1.3.1.	Physical and Chemical treatment	8
I.1.3.2	Biological treatment methods	9
I.2.	Biosorption of heavy metal	10
I.3.	Chromium toxicity	11
I.4.	Microbial Resistance mechanisms to chromium	14
I.5.	The factors affecting the biosorption process	16
I.5.1.	Temperature	16
I.5.2.	pH	16
I.5.3	Biomass dosage	17

I.5.4.	Biomass treatment	17
I.6.	Immobilization	20
I.7.	Alginate	21
I.7.1	Structure of Alginic Acid	21
I.7.2	Stability of Solid Alginates	23
I.7.3	Gels	24
I.7.3.1	Calcium Gels	25
	CHAPTER II	
II.	Materials and Methods	27
II.1.	Materials	27
II.1.1.	Media	27
II.1.2.	Chemicals and Reagents	28
II.2.	Methods	28
II.2.1.	Sampling of tannery effluent	28
II.2.2.	Isolation & Purification and Maintenance of isolates	28
II.2.3.	Screen of microorganisms tolerant to hexavalent and trivalent chromium	29
II.2.4.	Effect of Cr(VI) on growth rate of fungal isolates and its reduction percents	29
II.2.5.	Biomass production and treatment	30
II.2.6.	Immobilization of biomass	31
II.2.7.	Factors affecting removal efficiencies	32
II.2.7.1.	Initial chromium concentration	32
II.2.7.2.	Biomass dose	32
II.2.7.3.	Effect of temperature	32
II.2.7.4.	Effect of pH	32
II.2.8.	Biosorption studies	33

II.2.9.	Column experiment	33
II.2.10.	Surface characterization of biomass	34
II.2.10.1.	X-ray powder diffraction analysis of biomass (XRD)	34
II.2.10.2.	Fourier transform-infrared spectroscopy	34
II.2.10.3.	SEM analysis of biomass	34
II.2.11.	Phenotypic and Molecular characterization of fungal isolates.	35
II.2.12.	Determination of chromium	36
II.2.13.	Calculation of residual chromium percent and removal percent	36
	CHAPTER III	
III	Results	37
III.1.	Sampling of tannery wastewater	37
III.2.	Physicochemical analysis of tannery wastewater	37
III.3.	Isolation and purification of microorganisms	38
III.4.	Screen of microorganisms tolerant to hexavalent and trivalent chromium	38
III.5.	Growth rate of fungal isolates at different concentration of	40
III.6.	phenotypic and molecular characterization of fungal isolates	42
III.7.	Factors affecting biosorption using immobilized biomass	44
III.7.1	Effect of initial concentration	44
III.7.2.	Effect of biomass dose	45
III.7.3.	Effect of temperature	46
III.7.4.	Effect of pH	47
III.8.	Biosorption studies	48
III.8.1.	Biosorption of trivalent chromium	48
III.8.2.	Biosorption of hexavalent chromium	50
III.8.3.	Column studies	54

III.8.3.1.	1 st Column Experiment using dead free biomass treated with Na ₂ CO ₃	54
III.8.3.2.	2 nd Column Experiment using alginate biomass beads	55
III.9.	Surface Characterization of fungal isolates	57
III.9.1.	Scanning electron microscope	57
III.9.2.	Fourier transform infrared spectroscopy	59
III.9.3.	X-ray diffraction analysis of biomass surface	63
	CHAPTER IV	
IV.	Discussion	65
	CHAPTER V	
V.	Summary	76
	CHAPTER VI	
VI.	References	81
	CHAPTER VII	
VII	RECOMMENDATIONS	
	APPENDIX	I

ACKNOWLEDGMENTS

الحمد لله رب العالمين

Praise is to Allah, the lord of all creatures who taught man the whole science and the names of all things.

This thesis is prepared to fulfill the requirement in the Master of Science degree in the Faculty of Science in Ain Shams University. The thesis work was carried out during the period from.

This Master would never have been completed without the efforts of several people who really I appreciate their instructive support.

I am greatly indebted to **Prof. Dr. Mostafa Mohammed Hassan khalil**, Professor of inorganic chemistry, Department of Chemistry, Faculty of Science, Ain Shams University, for his supervision, valuable advice and his kind help and encourangement, his accuracy and precious comments made me fell enthusiastic to finish the thesis perfectly.

My special thanks are due to **Prof. Dr. Reda A. I. Abou Shanab**, Professor of Environmental Biotechnology Dept., Genetic Engineering and Biotechnology Research Institute, City of Scientific Research & Technology Applications, Alexandria, who suggest the topic of this thesis and who meticulously supervised the execution of the experimental studies and was always present tremendous help in the preparation and revision of the manuscript. Thanks for his scientific guidance, valuable suggestions, brilliant ideas, undeniable help, moral support, provision of facilties and criticism throughout this study. I appreciate his support and understanding, which drove me to perform to my maximum potential and complete my degree. I am very proud to perform research under his supervision.

I am particularly indebted to **Dr. Abdel-Nabi Salem**, lecturer of inorganic chemistry, Department of Chemistry, Faculty of Science, Ain-Shams University, for his valuable assistance, device, kind help and encouragement.

ACKNOWLEDGEMENTS

I wish to thank **Dr/Ahmed Mohammed omar**, researcher of new materials, Dept., new materials and advanced technology Research Institute, City of Scientific Research & Technology Applications, Alexandria, for his support and encourengement.

Sincere thanks to all my colleagues in the Genetic Engineering and Biotechnolgy Research institute, City of Scientific Research and Technology Applications.

I would like to thank whole heartedly my grandfather, my mother, my father, my wife and family members whose love and unconditional support, both on academic and personal front, enabled me to see the light of this day.

To you my daughter, Sama Taher Attiya Aboelazm, your sight to me motivated me to complete this work. I wish you to be much better than me.

Taher attiya aboelazm mohammed

ABSTRACT

In this study, 23 microbial isolates were isolated and tested for their ability to resist trivalent chromium and hexavalent chromium. Fungal isolates definitely D2 and 2NF proved high capability to resist trivalent and hexavalent chromium up to 15 mM and 5 mM respectively. D2 and 2NF were identified based on similarity of their 18S rRNA with analogs in genebank data. D2 belongs to aspergillus flavus strain USMG09 and 2NF belongs to fungal endophyte culture collection STRI:ICBG-Panama:TK1285 based on 99 and 99 % similarity. Pretreated biomass either by immobilization or chemical treatment proved high biosorption efficiency compared with dried native biomass. Immobilized biomass had high reduction percent of hexavalent chromium reached 100 % and high bioremoval percent of trivalent chromium reached 98.5 %.

LIST OF ABBREVIATIONS

Cr Chromium

NPS Non point source

ROS Reactive oxygen species

M Mannuoronic acid

G Glucorunic acid

DP Degree of polymerization

°C Degree Celsius

TBLPA Tris buffered low phosphorous agar

SPD Sabouraud dextrose agar

TSA Tryptic soy agar XRD x-ray diffraction

FTIR Fourier transform infrared

SEM Scanning electron microscope

ICP Inductively coupled plasma

BOD Biological oxygen demand

COD Chemical oxygen demand

TSS Total suspended solids

mM Millimolar

G Grams

D2 Aspergillus flavus strain USMG09

2NF Fungal endophyte culture collection STRI:ICBG-Panama:TK1285

LIST OF TABLES

Table	Title	Page
Table (1)	Physicochemical characteristics of tannery effluent after	
	tanning stage from old Cairo in Egypt.	37
Table (2)	Susceptibility percent of isolates to different conc. of chromium(III).	39
Table (3)	Susceptibility percent of isolates to different conc. of chromium(VI).	39
Table (4)	The biosorption capacity of D2 biomass live free and 2NF biomass live free	53
Table (5)	Change in C/C ₀ ratio and pH with change in throughput	
	volume (ml) at different time intervals in case of dead free	54
	biomass treated with Na ₂ CO ₃ .	34
Table (6)	Change in C/C ₀ ratio and pH with change in throughput	
	volume (ml) at different time intervals in case of alginate	56
	biomass beads.	

LIST OF FIGURES

Figure	Title	Page
Figure (1)	The leather manufacturing processes, used materials and its pollutants.	6
Figure (2)	The mechanisms of microbial chromate transport, toxicity, resistance and reduction (Modified from Ramirez-Diaz et al.,2008)	15
Figure (3)	Classical formulas of the two monomeric units of alginic acid.	21
Figure (4)	Formulas expressed as chair forms.	22
Figure (5)	The dry weight (g) of NF2 strain and the reduction percent of Cr(VI) at different concentration of Cr(VI).	40
Figure (6)	The dry weight (g) of D2 strain and the reduction percent of Cr(VI) at different concentration of Cr(VI).	41
Figure (7)	Phylogenetic tree showing the relationship between Fungal endophyte culture-collection STRI:ICBG-Panama:TK1285 and other isolates.	42
Figure (8)	Phylogenetic tree showing the relationship between Aspergillus flavus strain USMG09 and other isolates.	43
Figure (9)	The effect of initial conc. on residual Cr(VI) percent.	44

Figure (10)	Effect of biomass dose on residual Cr(VI) percent.	
, ,		45
Figure (11)	Effect of temp. on residual Cr(VI) percent.	46
Figure (12)	Effect of pH on residual Cr(VI) percent.	47
Figure	Detoxification of Cr(VI) by alginate biomass beads at	
(13)	different pH where the sequence from right to left: control	
	(without treatment),T2 at pH 2,T3 at pH 3,T4 at pH 4,T5 at	48
	pH 5 and T6 at pH 6.	
Figure	The final concentration of Cr(III) and removal percent of	
(14)	Cr(III) after treating 2 mM of chromium chloride solution.	49
Figure	Bioaccumulation of chromium(III) on alginate free beads	
(15)	and alginate biomass beads.	49
Figure	Change in Reduction percent of Cr(VI) with time per hour	
(16)	after treating 100 ppm of dichromate solution with biomass	
	live free, biomass live immobilized, alginate free, biomass	50
	live treated with NH ₄ Cl, biomass dead free and biomass	
	dead immobilized.	
Figure	Change in Reduction percent of Cr(VI) with time per hour	
(17)	after treating 100 ppm of dichromate solution with D2	
	biomass live treated with NH ₄ Cl, D2 biomass live treated	51
	with (NH ₄) ₂ SO ₄ , D2 biomass live immobilized, alginate	
	free, D2 biomass dead free and D2 biomass dead treated	

with NH₄Cl.

Figure (18)	The final concentration of chromium in ppm and the	
	removal percent of chromium after treating 100 ppm of	
	dichromate with 2NF live biomass, 2NF dead biomass, 2NF	52
	live biomass treated with NH ₄ CL, 2NF immobilized live	
	biomass and 2NF immobilized dead biomass.	
Figure	Breakthrough curve of chromium biosorption column (0.2 g	
(19)	of biomass, 0.37 g of support layer, 0.1 g of cotton layer,	
	influent flow rate 3.5-4.5 ml/min, 2 mM of chromium	55
	solution concentration).	
Figure	Breakthrough curve of chromium biosorption column (10 g	
(20)	of alginate biomass beads, 0.37 g of support layer, 0.1 g of	
	upper cotton layer, influent flow rate 1.5 ml/min, 2mM of	56
	chromium solution concentration).	
Figure	SEM image of 2NF live free before treating chromium	
(21)	solution	57
Figure (22)	SEM image of 2NF live free after treating chromium(VI)	
	solution.	58
	Solution.	50
Figure (23)	SEM image of 2NF live free after treating chromium(III)	
	chloride solution.	58