

Preparation and Characterization of Some Group 8B Salen Complexes and Their Application in Chemical Sensors

Thesis submitted for the degree of master In Inorganic and analytical chemistry

Presented by

Mohammed Hammam Mohammed

B.Sc. (2005)
Chemistry department, Faculty of science, Ain Shams University

Supervised by

Prof. Dr. Ibrahim Hosiny Ali Badr

Prof. of analytical chemistry, Faculty of science, Ain Shams University

Prof. Dr. Mostafa M. H. Khalil

Prof. of inorganic chemistry, Faculty of science, Ain Shams University

Dr. Ayman Helmy Kamel

Assistant Professor of Analytical Chemistry, Chemistry Department Faculty of Science, Ain Shams University

Preparation and Characterization of Some Group 8B Salen Complexes and Their Application in Chemical Sensors

Thesis Submitted by

Mohammed Hammam Mohammed

For the Degree of M.Sc of science in (Inorganic & Analytical Chemistry)

To

Department of Chemistry

Faculty of Science

Ain Shams University

Ain Shams University Faculty of Science Chemistry Department

Preparation and Characterization of Some Group 8B Salen Complexes and Their Application in Chemical Sensors

Thesis Advisors	Thesis Approval
Prof. Dr. Ibrahim Hosiny Ali Badr	
Prof. of analytical chemistry,	
Faculty of science, Ain Shams University	
Prof. Dr. Mostafa M. H. Khalil	•••••
Prof. of inorganic chemistry,	
Faculty of science, Ain Shams University	
Dr. Ayman Helmy Kamel	•••••
Assistant professor of analytical chemistry,	
Faculty of Science Ain Shame University	

Head of Chemistry department

Prof. Dr. Hamed Ahmed Younes Derbalah

فيسير كالمنه علب رور سوله والمفيون

<u>Dedication</u>

To my first tutor ever, to my Mom, my inspiration and my continuous support

To the one who taught me to be whom I am, my late Grandmother, may Allah bless her soul

To my biggest support system ever, my Dad

To my late aunt, who was always a guide and a support, may Allah bless your kind soul

To my colleagues who witnessed the journey, and without whom I would not have been able to finish the work, Ibrahim, Ahmed and Amira.

ACKNOWLEDGEMENT

First and foremost, I would like to thank **Allah** for giving me the opportunity and well-power to accomplish this work

I would like to express my sincere gratitude and indebt to **Prof. Dr. Ibrahim Hosiny Ali Badr**, Prof. of Analytical Chemistry, Chemistry Department, Faculty of Science, Ain Shams University. My ideal, who has been the inspiration for the whole thesis. He is always kind enough to suggest the topics of research and to follow up the progress of the work with keen interest, guidance and whose efforts made this humble work as possible. Thanks for bearing up with me all those years.

Also, I wish to express my sincere gratitude **Prof. Dr. Mostafa M. H. Khalil**, Prof. of inorganic Chemistry,

Chemistry Department, Faculty of Science, Ain Shams

University. He always follows up the progress of the work with

keen interest, he was always dedicated to pushing me further, and

offering help and advice, thanks for believing in me.

Furthermore, I wish to express my sincere gratitude to **Dr. Ayman Helmy Kamel,** Assistant Professor of Analytical Chemistry, Chemistry Department, Faculty of Science, Ain Shams University, for his efforts during this research work.

Mohammed Hammam Mohammed

List of abbreviations

K_{ij}^{Pot}	Potentiometric selectivity coefficient
$\Lambda_{ m m}$	molar conductivity
CHN	elemental analyses
DL	Detection limit
DMF	Dimethyl formamide
DMSO	Dimethyl sulphoxide
DOS	Dioctyl sebacate
$\mathbf{E}_{ext.ref}$	The potential of external reference electrode
$\mathbf{E}_{int.ref}$	The potential of internal reference electrode
\mathbf{E}_{j}	The liquid junction potential
\mathbf{E}_{M}	The membrane potential
EMF	Electromotive force
ESR	Electron Spin Resonance
FIM	Fixed interference method
FT-IR	Fourier transform infrared spectroscopy
ISE	Ion selective electrode
ISFET	Ion selective field effect transistor

IUPAC	International Union of Pure and Applied Chamistry
KTFPB	potassium tetrakis[bis(3,5- trifluoromethyl)phenyl] borate
LMCT	Ligand Metal charge transfer
M	Molarity or metal ion
MLCT	Metal ligand charge transfer
MPM	Matched potential method
nm	nanometer
NMR	Nuclear Magnetic Resonance
°C	degree Celsius
o-NPOE	2-nitrophenyl octyl ether
PU	Polyurethane
PVC	Poly vinyl Chloride
SB	Schiff base
SSM	Separate solution method
TDMAC	Tridodecyl methyl ammonium chloride
TGA	Thermogravimetric analysis
THF	Tetrahydrofuran
TLC	Thin layer chromatography
UV-VIS	Ultra violet-Visible spectroscopy

List of contents

1 CHAPTER ONE: GENERAL INTRODUCTION1
1.1 Potentiometric Sensors:5
1.2 Theory and principle of ion selective electrodes7
1.3 Selectivity of membrane electrodes:9
1.3.1 Mixed solution methods:
1.3.1.1 Fixed interference method (FIM):10
1.3.1.1 Matched potential method (MPM):10
1.3.1.2 Separate solutions method (SSM) $(a_i=a_j)$:11
1.3.1.3 Separate solutions method (SSM) $(E_i=E_j)$: .11
1.4 Classification of ion selective membrane
electrodes:
1.4.1 Solid membranes electrodes
1.4.1.1 Glass electrode:
1.4.1.2 Crystalline and polycrystalline membrane
electrodes:18
1.4.1.2.1 Single crystal membrane (The fluoride
electrode):19
1.4.1.2.2 Polycrystalline membranes:21

1.4.1.3	Heteroge	neous	sona	state	memorane
electrode	··				22
1.4.2 I	Liquid aı	nd liq	uid/poly	meric	membrane
electrodes.		•••••	•••••	•••••	23
1.4.2.1	Ion-excha	angers	•••••	•••••	25
1.4.2.2	Neutral C	Carriers:	••••••	•••••	26
1.4.2.3	Charged	carriers:.			27
1.4.2.4	Gas sensi	ng mem	brane pr	obes:	28
1.4.2.5	Ion sel	ective	field	effect	transistors
(ISFETs)):				29
1.5 Char	acterization	n of an Io	on-Selec	ctive Elec	ctrode32
1.5.1 S	Selectivity.	•••••	•••••	•••••	32
1.5.2 I	Detection li	mit			32
1.5.3 F	Response ti	me			35
1.5.4 N	Measuring 1	range		•••••	36
1.6 Reference	ces:				37
2 CHAPT	TER I	TWO:	SYN	THESIS	S AND
CHARACTE	RIZATIO	N OF	SCHII	FF BAS	SES AND
THEIR COM	PLEXES.	•••••	••••••	••••••	48
2.1 Int	roduction	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	48

2.2	Experimental58
2.2.1	Materials58
2.2.2	Instruments58
2.2.3	Synthesis of the ligand59
2.2.4	Synthesis of Ru(III) and Fe (III)complexes of
$H_2L^1Sc^2$	hiff base60
2.2.5	Synthesis of $Ru(I)$ complex of $H_2L^1Schiff$
base	60
2.2.6	Synthesis of Ru(III) complex of H ₂ L ² Schiff
base	61
2.2.7	Antimicrobial screening62
2.3	Results and discussion63
2.3.1	Characterization of Ligands and Complexes.66
2.3.1	1.1 Infrared Spectroscopy66
2.3.1	1.2 Electronic spectra77
2.3.1	1.3 ESR spectra81
2.3.1	1.4 Thermogravimetric analysis84
2.3.2	Biological activity of H_2L^{1-2} ligands and their
comple	xes90
2.4	Conclusion93

95	• • • • • • • • • • • • • • • • • • • •		ferences	5 Ref	2
ON SELECTIVE	ANIO	REE:	ER TI	CHAPT	3
SED ON METAL	BASE	RODES	ELEC	IBRANE	ME
103	•••••	LEXES	E COMP	IFF BASI	SCH
103			roduction	1 Intr	3
ents of anions:110	suremer	ce of mea	Importan	3.1.1	
electrodes based on	orane el	ive meml	lide selec	2 Iod	3
xes111	mplexe	iff base co	au(III) Sch	(III) and R	Fe
111	•••••	ntal	Experime	3.2.1	
ents111	luipmen	nts and ed	Reage	3.2.1.1	
orane electrodes and	membra	ration of	Prepa	3.2.1.2	
113	S	surement	netric mea	potention	
tiometric selectivity	potentio	ation of	Evalu	3.2.1.3	
114		• • • • • • • • • • •	esponse	and pH re	
116	sion	nd discuss	Results a	3.2.2	
ane composition on	nembran	nce of n	Influe	3.2.2.1	
116	• • • • • • • • •	onses	netric resp	potention	
the potentiometric	on t	of pH	Effect	3.2.2.2	
sitive membrane	sensi	iodide	of	response	
134		• • • • • • • • • • • • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·	electrode	
ne135	ise time	nic respon	Dyna	3.2.2.3	

	3.2.2.4	Potentiometric signal reversibility	136
	3.2.2.5	Life time of optimized me	mbrane
	electrode	<u>, </u>	136
	3.2.2.6	Comparative study of me	mbrane
	selectivit	ty	138
	3.2.3	Analytical application	141
	3.2.3.1	Potentiometric titrations	141
	3.2.3.2	Determination of iodide and iodi	ne in a
	commerc	cial betadine (povidone-iodine) solution	142
	3.2.4	Conclusion	146
3.3	Reference	ces	148

List of figures

Figure 1-1: the basic construction and the principle of
operation of chemical sensors6
Figure 1-2: Schematic diagram depicting the experimental
assembly required for potentiometric measurements with ion
selective electrode7
Figure 1-3: representation of the separate solution method
(SSM) vs. the fixed interference method (FIM), solid lines,
response of the primary ions, dashed and dotted lines,
monovalent and divalent interfering ions, respectively12
Figure 1-4: typical electrode system for measuring pH. (a)
glass electrode (indicator) and SCE (reference) immersed in
a solution of unknown pH. (b) Combination probe15
Figure 1-5: Diagram of glass Ag-AgCl cell for the
measurement of pH16
Figure 1-6: Structure of poly (vinyl chloride) (PVC),
polyurethane (PU), dioctylsebacate (DOS) and o-
nitrophenyloctyl ether (o-NPOE)25
Figure 1-7: Different types of anion-selective species that can
be doped in conventional polymer membrane anion sensor

Figure 1-8: An ISFET for measuing pH31
Figure 1-9: definition of the upper and lower detection limits of an ISE according to the IUPAC recomendations33
Figure 2-1: general scheme for the formation of a Schiff
base
Figure 2-2 general structures of Schiff bases50
Figure 2-3: The synthetic route of the reported ligand59
Figure 2-4: FT-IR spectrum of H ₂ L ¹ Schiff base ligand 70
Figure 2-5: FT-IR spectrum of Ru-H ₂ L ¹ complex71
Figure 2-6: FT-IR spectrum of Ru(CO) ₄ -HL ¹ complex72
Figure 2-7: FT-IR spectrum of Fe-H ₂ L ¹ complex73
Figure 2-8: FT-IR of H ₂ L ² Schiff base Ligand74
Figure 2-9: FT-IR spectrum of Ru-H ₂ L ² complex75
Figure 2-10: UV-Vis spectra of H ₂ L ¹ and its complexes in
DMF79
Figure 2-11: UV-Vis spectra of H ₂ L ² and its complexes in
DMF80
Figure 2-12: ESR spectrum of the Ru-H ₂ L ¹ complex82
Figure 2-13: ESR spectrum of the Fe-H ₂ L ¹ complex82