# Prediction of Low Birth Weight infants with Ultrasound Measurement of Placental Diameter and Placental Thickness at 18 and 36 Weeks Gestational Age "Prospective Study"

#### A Chesis

Submitted for partial fulfillment of Master Degree in **Obstetrics and Gynecology** 

#### By

### **Ola Hanafy Mahmoud Abd-El Kawy**

(M.B., B.Ch, Ain Shams University, 2008) (Resident of Obs. and Gyn. At Egypt Railways Hospital)

Under Supervision of:

## **Prof / Magdy Mohammed Mahmoud Abd El-Gawad**

Professor of Obstetrics and Gynecology Faculty of Medicine, Ain Shams University

### Dr / Walid El Basuony Mohammed

Lecturer in Obstetrics and Gynecology Faculty of Medicine, Ain Shams University



Faculty of Medicine
Ain Shams University
2016



First and foremost, I feel always indebted to **Allah**, the Most Beneficent and Merciful.

My most sincere gratitude is also extended to **Prof** / **Magdy Mohammed Mahmoud Abd El-Gawad**, Professor of Obstetrics and Gynecology, Faculty of Medicine, Ain Shams University, for his enthusiastic help, continuous supervision, guidance and support throughout this work. I really have the honor to complete this work under his supervision.

Words fail to express my appreciation to **Dr** / **Walid El Basuony Mohammed,** Lecturer in Obstetrics and Gynecology Faculty of Medicine, Ain Shams University, for his great help, valuable suggestions and directions throughout the whole work.

Last but not least, I can't forget to thank my patients who participated in this study, they were really cooperative, wishing them good health.

🖎 Ola Hanafy Mahmoud Abd-El Kawy

Cairo

November, 2016

# **List of Contents**

| Subject                                     | Page No. |
|---------------------------------------------|----------|
| List of Abbreviations                       | i        |
| List of Tables                              | iii      |
| List of Figures                             | v        |
| Protocol                                    | •••••    |
| Introduction                                | 1        |
| Aim of the Work                             | 8        |
| Review of Literature                        |          |
| Low Birth Weight                            | 9        |
| Normal fetal growth and weight              | 9        |
| Abnormal fetal growth and weight            | 18       |
| Normal and abnormal placental development.  | 34       |
| Ultrasound                                  | 47       |
| Basic Physics                               | 47       |
| Ultrasonographic Estimation of Fetal Weight | 49       |
| Patients and Methods                        | 68       |
| Results                                     | 95       |
| Discussion                                  | 125      |
| Summary                                     | 133      |
| Conclusion and Recommendations              | 137      |
| References                                  | 138      |
| Arabic Summary                              |          |

### **List of Abbreviations**

List of /tool evider

Full-term

**AC** : Abdominal circumference

**BM** : Basement membrane

**BMI** : Body mass index

Abbr.

**BPD** : Biparietal diameter

**CS** : Cesarean section

**EFW**: Estimated fetal weight

**EPV** : Estimated placental volume

**FGR** : Fetal growth restriction

**FL**: Femur length

**HC**: Head circumference

**IGF** : Insulin-like growth factor

**IUGR** : Intrauterine growth restriction

**LBW**: Low birth weight

MHz : Megahertz

**MSAFP** : Maternal serum alpha fetoprotein

**NPV** : Negative predictive value

**PAPP-A**: Pregnancy-associated plasma protein-A

**PPV** : Positive predictive value

**SD** : Standard Deviations

**SGA** : Small for gestational age

**β-hCG** : β-human chorionic gonadotropin

**VD** : Vaginal delivery

# **List of Tables**

| Table No           | v. Gitle                                                                                 | Page ' | No. |
|--------------------|------------------------------------------------------------------------------------------|--------|-----|
| <b>Table</b> (1):  | Demographic data distribution of the group.                                              |        | 95  |
| <b>Table (2):</b>  | Sonographic fetal biometry of the inc women at 18 weeks of gestational age               |        | 96  |
| <b>Table (3):</b>  | Sonographic fetal biometry of the inc women at 24 weeks of gestational age               |        | 97  |
| <b>Table (4):</b>  | Sonographic fetal biometry of the inc women at 36 weeks of gestational age               |        | 98  |
| <b>Table (5):</b>  | Postpartum measurements data of newborn and placenta.                                    |        | 99  |
| <b>Table (6):</b>  | Mode of delivery and fetal sex distribution the study group.                             |        | 100 |
| <b>Table (7):</b>  | Fetal weight distribution of the study gro                                               | up     | 102 |
| <b>Table (8):</b>  | Correlation of fetal weight and demogradata of the study group.                          | -      | 103 |
| <b>Table (9):</b>  | Correlation of fetal weight and parity of study group.                                   |        | 105 |
| <b>Table (10):</b> | Correlation of fetal weight and abortion study group.                                    |        | 107 |
| <b>Table (11):</b> | Correlation of fetal weight and ultras measurements at 18 weeks of the new and placenta. | vborn  | 108 |
| <b>Table (12):</b> | Correlation of fetal weight and ultras measurements at 24 weeks of the new and placenta. | vborn  | 110 |

| <b>Table (13):</b> | Correlation of fetal weight and ultrasound measurements at 36 weeks of the newborn and placenta                      | 2 |
|--------------------|----------------------------------------------------------------------------------------------------------------------|---|
| <b>Table (14):</b> | Correlation of fetal weight and postpartum measurements of the newborn and placenta 11                               | 4 |
| <b>Table (15):</b> | Correlation between fetal weight and other parameters, using Pearson Correlation Coefficient                         | 5 |
| <b>Table (16):</b> | Regression coefficient in the logistic model for predicting low birthweight from placental parameters                | 8 |
| <b>Table (17):</b> | Diagnostic Performance of placental thickness and placental diameter in Discrimination of fetal weight at 18 weeks   | 9 |
| <b>Table (18):</b> | Diagnostic Performance of placental thickness and placental diameter in Discrimination of fetal weight at 24 weeks   | 0 |
| <b>Table (19):</b> | Diagnostic Performance of placental thickness and placental diameter in Discrimination of fetal weight at 36 weeks   | 1 |
| <b>Table (20):</b> | Diagnostic Performance of placental thickness and placental diameter in Discrimination of fetal weight at postpartum | 2 |

# **List of Figures**

| Figure No           | v. Eitle                                                                                                                               | Page No.            |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| Figure (1):         | Medison X4 ultrasound                                                                                                                  | 73                  |
| Figure (2):         | Diagrammatic representation of method measuring placental diameter and the either using a single line or in a lefashion as appropriate | ickness<br>oilinear |
| Figure (3):         | Ultrasound images showing an examp<br>set of placental measurements being n<br>two orthogonal planes                                   | nade in             |
| Figure (4):         | Pie chart mode of delivery distribution study group                                                                                    |                     |
| Figure (5):         | Pie chart fetal sex distribution of the group                                                                                          | •                   |
| Figure (6):         | Pie chart fetal weight distribution of the group                                                                                       | •                   |
| <b>Figure (7):</b>  | Bar chart between fetal weigh demographic data                                                                                         |                     |
| Figure (8):         | Bar chart between fetal weight and pari                                                                                                | ty 106              |
| Figure (9):         | Bar chart between fetal weight and abo                                                                                                 | rtion 107           |
| <b>Figure (10):</b> | Bar chart between fetal weight and ultr measurements at 18 weeks                                                                       |                     |
| <b>Figure</b> (11): | Bar chart between fetal weight and ultr measurements at 24 weeks                                                                       |                     |
| <b>Figure (12):</b> | Bar chart between fetal weight and ultr measurements at 36 weeks                                                                       |                     |
| <b>Figure (13):</b> | Bar chart between fetal weigh postpartum measurements                                                                                  |                     |

| <b>Figure (14):</b> | Positive correlation and significant between fetal weight and Placental weight                                     |
|---------------------|--------------------------------------------------------------------------------------------------------------------|
| <b>Figure (15):</b> | Positive correlation and significant between fetal weight and Placental thickness                                  |
| <b>Figure (16):</b> | Positive correlation and significant between fetal weight and Placental diameter                                   |
| <b>Figure (17):</b> | Regression coefficient in the logistic model for predicting low birth weight from placental 118                    |
| <b>Figure (18):</b> | ROC curve for placental diameter at 18, 24 and 36 weeks and postpartum as predictors of Low Birth Weight           |
| Figure (19):        | ROC curve for placental thickness at 18, 24 and 36 weeks and postpartum as predictors of Low Birth Weight          |
| <b>Figure (20):</b> | ROC curve for Abdominal circumference (AC) at 18, 24 and 36 weeks and postpartum as predictors of Low Birth Weight |
| Figure (21):        | ROC curve for Biparietal diameter (BPD) at 18, 24 and 36 weeks and postpartum as predictors of Low Birth Weight    |
| <b>Figure (22):</b> | ROC curve for Femur length (FL) at 18, 24 and 36 weeks and postpartum as predictors of Low Birth Weight            |

#### Abstract

Background: Birth weight is the first weight of the fetus or newborn obtained after birth preferably measured within the first hour of life before significant postnatal weight loss has occurred. Aim of the **Work:** The aim of the work is to predict low birth weight infants by ultrasound measuring of placental diameter and thickness at 18 and 36 weeks of gestation. Patients and Methods: Study site: Obstetric outpatient clinic of Ain Shams University Maternity Hospital. Study design: Observational prospective study that estimates the association of each maternal and placental variables with low or normal birth weight. Population: The total sample was consisted of one hundred and thirteen pregnant women at 18, 24 and 36 weeks of gestation. **Results:** This study showed that placental thickness at 18 wks has high diagnostic validity more than placental diameter at a cut-off  $\leq$  16.2 mm. It also showed that placental thickness at 36 wks has high diagnostic validity more than placental diameter at a cut-off  $\leq 23$  mm Conclusion: The placental thickness should be included in routine 2D ultrasound scans to improve the accuracy of ultrasound estimated fetal weight. **Recommendations:** Training of personals on 2D Ultrasound measurement of placental thickness is mandatory to maximize the accuracy.

**Key words:** Birth weight, postnatal weight, infants, gestation, placental diameter

## Introduction

ormal fetal growth is a critical component of a healthy pregnancy and influences the long-term health of the offspring. Common adult diseases such as type 2 diabetes and cardiovascular conditions have been linked to abnormal fetal growth, particularly fetal growth restriction (FGR) (Gluckman et al., 2008).

Birth weight is the first weight of the fetus or newborn obtained after birth preferably measured within the first hour of life before significant postnatal weight loss has occurred (Adamson and Harold, 2007).

An ideal classification of fetal growth should have the ability to distinguish accurately between normal and abnormal growth determined by perinatal morbidity and mortality or even life-course morbidity. It is well established that at most gestational weeks, perinatal morbidity and mortality increase when the fetal size moves farther away from the "optimal" size (Wilcox and Skjaerven, 1992). However, fetal size alone cannot accurately predict perinatal mortality and morbidity. Integration of other indicators of fetal and placental health may enhance the accuracy in defining FGR (Zhang et al., 2010).

Weight at birth is a good indicator of the newborn's chances for survival, growth, long-term health and psychosocial development (**Zeleke et al., 2012**).

Despite careful antenatal surveillance involving scrupulous examination, an issue of considerable disappointment is that the majority of low birth weight (LBW) infants are not diagnosed until delivery. LBW infants are susceptible to hypoxia and fetal distress, long-term handicap and fetal death. Compounding the problem of the LBW infant is the need to identify the fetus failing to reach its growth potential (Habib, 2002).

Definition of fetal growth restriction (FGR) is not simple, and is usually based on birth weight <10 population-based centile (**Resnik**, 2002).

Much effort has been directed toward the detection and assessment of intrauterine growth restriction (IUGR) (Azpurua et al., 2010).

An ideal definition of FGR should take into account the growth potential of the fetus, current fetal size, fetal and placental health, and, if available, fetal growth velocity. However, as FGR has a multifactorial etiology (Maulik et al., 2006), none of these factors alone seems able to discriminate between constitutionally and pathologically small fetuses with great certainty (Zhang et al., 2010).

Fetal growth depends on the interactions of genetic and epigenetic determinants functioning against an environment of maternal, fetal, and placental influences. Intrauterine growth restriction (IUGR) is a failure to achieve the growth potential promised by these factors. IUGR manifests as a variable

syndrome of suboptimal growth and body disproportions rather than a well-defined etiologic entity. Causes for IUGR are diverse and include aneuploidies, non-aneuploid syndromes, infections, metabolic factors and placental disorders (**Scifres and Nelson, 2009**).

Growth restriction may be symmetrical or asymmetrical depending on the time of insult during pregnancy (**Deorari et al., 2008**).

Although only 20 percent of growth-restricted fetuses demonstrated sonographic head-to-abdomen asymmetry, these fetuses were at increased risk for intrapartum and neonatal complications. Symmetrically growth-restricted fetuses were not at increased risk for adverse outcomes compared with those appropriately grown. These investigators concluded that asymmetrical fetal growth restriction represented significantly disordered growth, whereas symmetrical growth restriction more likely represented normal, genetically determined small stature (**Dashe et al., 2000**).

Risk factors for fetal growth restriction include constitutionally small mothers, poor maternal nutrition, social deprivation, maternal and fetal infections, congenital malformations, chromosomal aneuploidies, disorders of cartilage and bone, drugs with teratogenic and fetal effects, vascular disease, renal disease, pregestational diabetes, chronic hypoxia, anemia, placental and cord abnormalities, infertility, extrauterine pregnancy, antiphospholipid antibody

syndrome, genetics and multiple fetuses (Cunningham et al., 2014).

A healthy baby at term is the product of three important factors: a healthy mother, normal genes, and good placental implantation and growth (Kliman, 2001).

The placenta is a highly vascular organ. Its major function is to provide the essential connection between the mother and the developing fetus (**Spirt and Gordon**, **1996**).

Adequate fetal growth depends on the efficient delivery of nutrients from the mother to the fetus and therefore requires normal uterine perfusion, normal transplacental exchange of nutrients and waste, and normal umbilical blood flow (**Azpurua et al., 2010**).

Adequate blood supply is of major importance for fetal growth and well-being; therefore placental vascular maladaptation, as a result of placental infarcts, tumors, abnormal uteroplacental vascularity, low placental weight, and placental inflammation, is an important cause of fetal growth restriction (FGR) (Villar et al., 2006).

The placenta is the principal influence on fetal birth weight, and it is thought that abnormalities of placental growth may precede abnormalities in fetal growth (**Thame et al., 2001**).

Because the placenta may be the first organ to manifest changes of disease in pregnancy, placental features may have a role in screening for pregnancy complications (Lee et al., 2012).

Examination of the placenta plays a foremost role in the assessment of normal and abnormal pregnancies. A methodical sonographic evaluation of the placenta should include: location, visual estimation of the size (and, if appearing abnormal, measurement of thickness and/or volume), implantation, morphology, anatomy, as well as a search for anomalies, such as additional lobes and tumors (**Abramowicz and Sheiner, 2008**).

Patterns of placental growth, relating to different functional dimensions of the placenta, deliver a different birth weight for a given placental weight (Salafia et al., 2007).

Sonographically, the normal placenta is homogenous and 2 to 4 cm thick, lies against the myometrium, and indents into the amniotic sac. The retroplacental space is a hypoechoic area that separates the myometrium from the placenta's basal plate and measures less than 1 to 2 cm. During prenatal sonographic examinations, placental location and relationship to the internal cervical os are recorded. The umbilical cord is also imaged, its fetal and placental insertion sites examined, and its vessels counted (Cunningham et al., 2014).

Attempts made to predict small-for-date infants from placental volume at the second trimester did not yield satisfactory result, however, the fact that small placental size