Uses of Flexible Fiberoptic Bronchoscopy in I.C.U

An Essay

Submitted for partial fulfillment of Master Degree in General intensive care medicine

By

Mahmoud Mohamed Elsayed Eladl

M.B., B.Ch. (Tanta University)

Under supervision of

Prof.Dr/ Hala Gomaa Salama Awad

Professor of Anesthesia, Intensive Care and Pain Management Faculty of Medicine- Ain Shams University

Prof.Dr/Adel Mekhail Fahmy Shnodah

Professor of Anesthesia, Intensive Care and Pain
Management

Faculty of Medicine - Ain Shams University

Dr/ Walid Ahmed Mansour

Lecturer of Anesthesia, Intensive Care and Pain Management Faculty of Medicine - Ain Shams University

> Faculty of Medicine Ain Shams University 2015

Acknowledgement

First and foremost thanks to "ALLAH," the most merciful to whom I relate any success in my life.

I am delighted to express my sincere appreciation to Prof. Dr/Hala Gomaa Salama Awad

Professor of Anesthesia, Intensive Care and Pain Management, Faculty of Medicine, Ain Shams University, for her constant help, instructive supervision and valuable guidance.

My sincere thanks Prof. Dr/Adel Mekhail Fahmy Shnodah

Assistant Professor of Anesthesia, Intensive Care and Pain Management, Faculty of Medicine, Ain Shams University, for his expert advice, kind supervision, great help and the time and effort he generously gave me.

My sincere thanks to Dr/Walid Ahmed Mansour

Lecturer of Anesthesia, Intensive Care and Pain Management, Faculty of Medicine, Ain Shams University, for his unlimited help, continuous guidance and encouragement throughout this study.

I would like to express my hearty thanks to my family and my colleagues, for their support, understanding and tolerance till this work was completed.

Contents

Subjects Page	
Acknowledgementi	
List of Abbreviationii	
List of Tablesv	
List of Figures vi	
• Introduction	
• Indications and contraindications of flexible	
fiberoptic bronchoscopy3	
• Monitoring, Sedation and Analgesia during uses of	
flexible fiberoptic bronchoscopy52	
Complications of flexible fiberotic bronchoscopy and	
management76	
• Summary 91	
• References	
Arabic Summary	

List of Abbreviations

Abbreviation	Meaning		
AAI	Alaris Auditory Evoked Potential Index		
ABG	Arterial Blood Gas		
AIDS	Acquired Immune Deficiency Syndrome		
AMI	Acute Myocardial Infarction		
AROC	Area Under Receiver Operating Characteristic		
BAL	Broncho-alveolar Lavage		
BIS	Bispectral Index		
BPF	Bronchopleural Fistula		
BTS	British Thoracic Society		
CAP	Community Acquired Pneumonia		
CCD	Charge Coupled Device		
CMV	Cytomegalo Virus		
COPD	Chronic Obstructive Pulmonary Disease		
CPIS	Clinical pulmonary Infection Score		

СРР	Cerebral Perfusion Pressure
СТ	Computed Tomogram
CYP450	Cytochrome P
DDAVP	Desamino-D-Arginine Vasopressin
EBUS	Endobronchial Ultrasound
EEG	Electroencephalogram
ETCO2	End-Tidal CO2
ETT	Endotracheal Tube
FEV1	Forced Expiratory Volume (In 1 Sec)
FFB	Flexible Fiberoptic Bronchoscopy
GABA	Gamma-Aminobutyric Acid
НСАР	Health Care Associated Pneumonia
HIV	Human Immunodeficiency Virus
ICP	Intra Cranial Pressure
ICU	Intensive Care Unit
ILD	Interstitial Lung Diseases
MAP	Mean Arterial Pressure
MLEAPS	Middle Latency Auditory Evoked Potential
MV	Mechanical Ventilation
NMDA	N-Methyl-D-Aspartate

PDT	Percutaneous Dilatational Tracheostomy
PEEP	Positive End-Expiratory Pressure
РЈР	Pneumocystis Jiroveci Pneumonia
PSB	Protected-Specimen Brushing
RB	Rigid Bronchoscopy
ROSE	Rapid On-site Evaluation
SAO2	Arterial Oxygen Saturation
SPO2	Blood Oxygen Saturation
ТВ	Tuberculosis
TBBX	Transbronchial Biopsy
TBNA	Transbronchial Needle Aspiration
TTNA	Transthoracic Needle Aspiration
VAP	Ventilator Associated Pneumonia

List of Tables

Table No.	Title	Page No.
Table (1)	Indications for Diagnostic Bronchoscopy	24
Table (2)	Indications for therapeutic bronchoscopy	25
Table (3)	Preparation for bronchoscopy	55
Table(4)	Pre-sedation flexible bronchoscopy checklist	64
Table(5)	Ramsay sedation scale	75

List of Figures

Figure No.	Title	Page No.
Figure (1)	Procedure of bronchoscopy	4
Figure (2)	Fibreoptic bronchoscopy with eye piece	10
Figure (3)	Video bronchoscopy	10
Figure(4)	Distal tip of video bronchoscopy showing instrument channel, fiberoptics and charge-coupled device video ship	11
Figure(5)	Vidoe bronchoscopy with connections to image processor and light source	11
Figure(6)	Close-up of bronchial brush (left) and handle (right): when the brush is protruding out of the sheath.	15
Figure(7)	Distal view of the biopsy forceps in an open and closed position.	19
Figure(8)	Proximal view of the biopsy forceps showing the handle that used to open and shut them.	20
Figure(9)	FFB Percutaneou dilatational tracheostomy	50
Figure(10)	Room setup with the semirecumbent patient being approached from the front.	57

Figure No.	Title	Page No.
Figure(11)	Bronchoscopic image obtained with the semi-recumbent patient approached from front	57
Figure(12)	Room setup with patient being approached from the back in a supine position.	59
Figure(13)	Bronchoscopic image obtained with the supine patient approached from the back.	60

Introduction

Since its introduction in daily medical practice in the late 20th century, flexible bronchoscopy (FB) has had an increasing role in the everyday life of the pulmonologist. Particularly for patients hospitalized in intensive care units (ICUs), FB has changed current diagnostic and therapeutic approaches. The versatility of the flexible bronchoscope, combined with its portability, allows one to perform the technique at the bedside, and this is of major importance in the unstable patient, who is often unable to be transported safely to the bronchoscopy suite (*Fragoso and Rosal, 2011*).

FB performed in the ICU has its own specificities, either with regard to the patient or the environment that surrounds him or her. The critical patient often has one or more organ failures, which makes him or her a high-risk patient for the procedure. Moreover, as respiratory system involvement is a common feature, regardless of the precipitating factor of critical illness, the risk of respiratory failure is not negligible. Finally, the unstable character of such patients' diseases imposes time constraints and puts pressure on the bronchoscopist: the procedure must be rapidly performed and in certain circumstances absolute safety cannot be guaranteed throughout the examination, yet the urgency of it makes it imperative (*Fragoso and Rosal*, 2011).

Uses of flexible fiberoptic bronchoscopy in ICU

In relation to the surroundings, the bronchoscopist is faced with a reduced amount of space, because of crowding of the monitoring equipment and therapeutic devices, quite different from the comfortable and controlled environment of a bronchoscopy suite. These aspects, taken together, imply an additional technical preparation. FB can be performed safely, as long as certain principles are met, but one must keep in mind potentially serious complications that can arise from this procedure (*Fragoso and Rosal*, 2011).

Because of its efficiency and safety in trained hands, it has been used increasingly in the unstable patient, particularly the patient under mechanical ventilation. FB in critical patients should always be performed by skilled pulmonologists or intensivists. There is no clear evidence in the literature suggesting the minimum number of procedures one needs to perform to be considered well trained, and most probably that number varies on an individual basis, depending on one's dexterity (*Plekker et al.*, 2010).

Indications and Contraindications of Flexible Fiberoptic Bronchoscopy

Bronchoscopy is a fundamental technique used in the study of respiratory diseases. It provides visualization of the upper airway and initial divisions of the tracheobronchial tree and allows for samples to be taken from the trachea, bronchi, mediastinum and lung parenchyma. Furthermore, it is essential in the therapeutic management of patients with hemoptysis, aspiration of a foreign body, excess secretions, neoplastic lesions and obstruction of the central airway (*Esquinas et al.*, 2013).

Bronchoscopy has become a key element in modern pulmonology: it has diagnostic indications in most respiratory diseases and is the cornerstone in some aspects of current respiratory therapy methods. Among the different types of bronchoscopy, flexible bronchoscopy (introduced in 1968 by Ikeda) is the most widely used technique, although there are other bronchoscopy types, such rigid (RB) as ultrasound-guided bronchoscopy endobronchial (EBUS) (Colt et al., 2011).

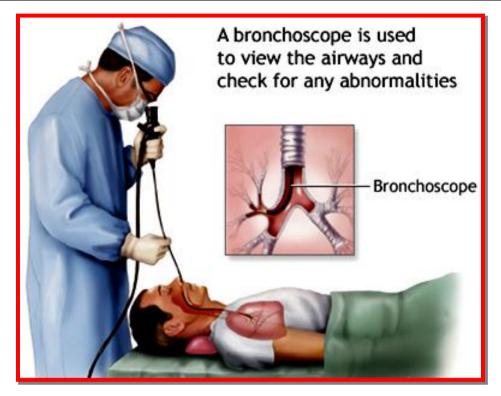


Fig. 1: Procedure of Bronchoscopy.

(Shah, 2012)

Bronchoscopy is the visual examination of the lungs and air passages, called bronchial tubes (Fig.1). The exam is performed with a bronchoscope, an instrument with a lighted tip. Bronchoscopy is also used to obtain tissue and secretion samples, and to wash the tissues with saline, a procedure called lavage, which can help a doctor diagnose cancer or an infection (Esquinas et al., 2013).

therapeutic Diagnostic and procedures opertaining to these areas include, but are not limited to, rigid bronchoscopy, transbronchial needle aspiration (TBNA), auto fluorescence bronchoscopy, endobronchial ultrasound (EBUS), transthoracic needle aspiration (TTNA) and biopsy, laser bronchoscopy, endobronchial electrosurgery, argon-plasma coagulation, airway stent insertion. cryotherapy, bronchoplasty and dilatation techniques, endobronchial photodynamic therapy, radiation, percutaneous dilatational tracheotomy, transtracheal oxygen catheter insertion, medical thoracoscopy, and imaging-guided thoracic interventions (Fruchter et al., 2011).

Bronchoscopy in the intensive care unit:

Respiratory involvement is common in the critically ill patient in the intensive care unit (ICU) with 30-50% of the admissions requiring the use of mechanical ventilation. FFB remains a very valuable tool in the evaluation and management of these patients as well as to evaluate complications of mechanical ventilation especially atelectasis and VAP. Bronchoscopy in the ICU plays a role as a diagnostic and therapeutic tool. Many of the

indications for bronchoscopy in the ICU overlap with the general indications for the procedure as discussed above (Fuentes and Venkatram, 2012).

Bronchoscopy Unit Equipment:

The bronchoscope is essentially a flexible tube fibreoptic bundles, channels consisting of instruments and a number of wires for manipulating the distal end. The bundles of optical fibres carry light to the distal end in order to illuminate the airways, and further bundles transmit the image back eyepiece (Fig.2). The to modern bronchoscopes have a charge-coupled device (CCD) chip at the distal end which captures the image and is subsequently transmitted to the monitor (Figs. 3-5) (Shah, 2012).

The resolution of the image is excellent and continues to improve, with some scopes providing very high-definition images with digital magnification options. There are also hybrid devices for special circumstances, which use the fibreoptic bundle to transmit the image back towards the head of the bronchoscope. In this case, the CCD is located