

Ain Shams University
Faculty of Engineering
Electronics and Communications Department

MEMS-Based Oscillators A Thesis

Submitted in partial fulfillment for the requirements of Master of Science degree in Electrical Engineering

Submitted by:

Nabil Mohamed Sinoussi

B.Sc. of Electrical Engineering (Electronics and Communications Department)
Ain Shams University, 2004.

Supervised by:

Prof. Dr. Hisham Haddara Dr. Ayman El-Sayed

Cairo, 2011

Curriculum Vitae

Name: Nabil Mohamed Sinoussi

Date of Birth: 13/9/1982 Place of Birth: Cairo, Egypt

First University Degree: B.Sc. in Electrical

Engineering

Name of University: Ain Shams University

Date of Degree: June, 2004

Statement

This dissertation is submitted to Ain Shams University for the degree of Master of Science in Electrical Engineering (Electronics and Communications Engineering).

The work included in this thesis was carried out by the author at the Electronics and Communications Engineering Department, Faculty of Engineering, Ain Shams University, Cairo, Egypt.

No part of this thesis was submitted for a degree or a qualification at any other university or institution.

Name: Nabil Mohamed Sinoussi

Date: / /2011

Acknowledgments

All praise is due to Allah, the Most Merciful Lord of the Worlds, Who taught man what he knew not. I would like to thank God Almighty for bestowing upon me the chance, strength and ability to complete this work.

I need to express my profound love and gratitude to my mother who supported me with her unlimited love and unconditional care and who continuously encouraged me to finish this work. I am in deep debt to my wife for her fruitful love, distinct emotions and exceptional encouragement. I would also like to thank my brother and sister for their strong and valuable support.

I wish to express my gratitude to my supervisors, Professor Hisham Haddara and Dr. Ayman El-Sayed for their flexibility, guidance, encouragement, insightful thoughts and stimulating discussions. I have learnt a lot from both of them, on both the technical and personal levels.

I am also grateful to Yasseen Nada, Si-Ware senior MEMS design engineer, for his help in analyzing and simulating the MEMS structure used in this work. I am also grateful to Mohamed El-Kholy ex-Si-Ware analog staff engineer whose technical discussions were quite deep and fruitful.

I owe a lot to the whole Si-Ware family for facilitating my work and thesis writing; particularly, the Timing Products Division team and my direct managers Ayman Ahmed and Ahmed Helmy. Special thanks go to many of my colleagues in Si-Ware systems: Botros George, Mostafa Medhat, Hisham Omran, Ahmed El-Shennawy and Ahmed El-Kholy for their help in the thesis writing and structuring and handling paper work.

Many thanks are also due to my Professors at IC Lab, Ain Shams University, for their knowledge.

Nabil Mohamed Sinoussi Electrical and Communications Department Faculty of Engineering Ain Shams University Cairo, Egypt 2011

Abstract

Nabil Mohamed Sinoussi, "MEMS-Based Oscillators", Master of Science dissertation, Ain Shams University, 2011.

This thesis is concerned with the design of sustaining oscillator circuits for MEMS resonators in the scope of replacing Quartz crystals (XTALs) in frequency reference applications. The thesis discusses the challenges and difficulties in the design of a MEMS resonator oscillator (MRO) and which are imposed due to the resonator non-idealities.

A conclusive analysis of the resonator small signal model under capacitive loading is presented. The analysis deduces two parameters which effectively describe the resonator small signal response in terms of phase and gain. The analysis introduces a physical resonator parameter which is the effective Quality factor (Q_{eff}) . (Q_{eff}) is proven to be the main measure in predicting the resonator performance inside an oscillator. Moreover, an anti-resonance cancellation technique is analyzed in details explaining the impact of imperfect cancellation on the shape of the resonator response. The analysis almost coincides with simulation results with less than 1% of error. Based upon this analysis, a new concept for the design of the sustaining amplifier circuit is developed which facilitates the design process by specifying the gain and phase requirements from the sustaining circuit.

Using an industrial free-free beam (FF) resonator, a practical MRO circuit is implemented using TSMC $0.13\mu m$ CMOS technology. The resonator has a fundamental resonance mode at 20MHz and spurious one at 4MHz. The oscillator operates at 20MHz and rejects the spurious resonance at 4MHz using a high order high-pass filter implemented within the sustaining circuit. The circuit is actually a variable gain amplifier (VGA) whose gain is controlled by an automatic gain control (AGC) circuit which forces the amplifier gain to track the resonator quality factor (Q-factor) variations across process and temperature. In order to protect it from power-handling non-linearities, the resonator is actuated by a limiting stage which controls its input power level.

By utilizing a flexible trimming infrastructure, the design is able to pass the combined process corners of both CMOS and MEMS technologies. At 1.1V supply and 180mVpp input signal to the resonator, the oscillator consumes a current of $500\mu A$ and achieves a phase noise of 113dBc/Hz at 1kHz offset from the 20MHz carrier.

Key words: MEMS, Resonators, VGA, AGC, Oscillators, anti-resonance cancellation, trimming, limiting stage.

Summary

This thesis consists of five chapters. Chapter 1 is an introduction to the thesis. It introduces the concept of Quartz crystals (XTALs) replacement and the advantages of the MEMS technology. Moreover, this chapter defines the scope and objectives of this thesis.

Chapter 2 is an overview on MEMS resonator oscillators, the accompanied design challenges and the state-of-art techniques in industry and literature that address these challenges.

Chapter 3 presents a conclusive analysis of the transfer characteristic of the small signal resonator model. The analysis extracts two descriptive parameters that can summarize the overall resonator response under capacitive loading. Moreover, an anti-resonance cancellation technique is extensively analyzed showing the impact of imperfect cancellation on the shape of the resonator response. The analysis is valid for either MEMS or Quartz resonator models.

Chapter 4 demonstrates the design of a MEMS resonator oscillator based upon an industrial free-free beam resonator. The circuit is a variable gain amplifier (VGA) whose gain is controlled by an automatic gain control (AGC) circuit which forces the amplifier gain to track the resonator quality factor (Q-factor) variations across process and temperature. In order to protect it from power-handling non-linearities, the resonator is actuated by a limiting stage which controls the input power level to the resonator. The detailed schematics of the different circuits are discussed. The simulation results are displayed.

Finally, Chapter 5 concludes and proposes future researches that can be based upon this thesis.

Contents

List of Abbreviations and Symbols									
List of Tables xv									
Li	st of	Figure	es		xvii				
1	Intr	oducti	ion		23				
	1.1	Quart	z Crystal	Replacement	. 23				
	1.2			?					
	1.3	MEM	S Versus (Quartz	. 25				
	1.4			ectives					
	1.5								
2	ME	quency Synthesizers	29						
	2.1			fors Overview	. 30				
		2.1.1		d-Clamped Beam Resonator					
		2.1.2		e Beam Resonator					
		2.1.3	Contour	-Mode Disk Resonator	. 32				
	2.2	Design		ges					
		2.2.1		otional Resistance					
		2.2.2		l Resistance Variations					
		2.2.3		ed Resonance Modes					
		2.2.4	Power H	andling	. 34				
		2.2.5		cy Stability					
			2.2.5.1						
			2.2.5.2	Bias Voltage Compensation					
			2.2.5.3						
			2.2.5.4	Fractional PLL Compensation					
	2.3	Chapt	er Summa	ary					

x CONTENTS

3	Theory and Analysis								
3.1 Resonator S			ator Small Signal Model						
	3.2	Resona	ator Transfer Characteristic	. 44					
		3.2.1	Lossless Resonator	. 45					
		3.2.2	Real Resonator	. 47					
	3.3	Effecti	ve Q-Factor (Q_{eff})	. 55					
	3.4	Anti-R	Resonance Cancellation	. 56					
		3.4.1	Perfect Cancellation $(\Delta C = 0)$. 61					
		3.4.2	Positive Anti-Resonance ($\Delta C > 0$)	. 62					
		3.4.3	Negative Anti-Resonance ($\Delta C < -Cx$)	. 63					
		3.4.4	Real Zeros $(-C_x \le DC < 0)$. 65					
			3.4.4.1 Zero Anti-Resonance($\Delta C = -C_x$).	. 67					
		3.4.5	Impact of Load Mismatch	. 69					
	3.5	AC Sin	mulations	. 71					
	3.6	Chapte	er Summary	. 74					
4	A P	A Practical MEMS Resonator Oscillator 79							
	4.1	Free-F	ree Beam Resonator	. 79					
		4.1.1	Resonator Modes	. 80					
		4.1.2	Small Signal Electrical Model and AC Respon	se 83					
	4.2								
	4.3	Circuit	t Implementation	. 89					
		4.3.1	Gain Stage (Av)	. 89					
		4.3.2	Buffer Stage (Bv)						
		4.3.3	Programmable Phase Shifter	. 95					
		4.3.4	Amplitude Limiting Stage (L)	. 95					
		4.3.5	Bias Cell	. 97					
		4.3.6	Automatic Gain Control (AGC)	. 100					
	4.4	Simula	ation Results	. 106					
		4.4.1	Small Signal Open Loop Response	. 106					
		4.4.2	Transient Simulations	. 107					
		4.4.3	Phase Noise	. 111					
	4.5	Chapte	er Summary	. 113					
5	Con	clusion	ns and Future Work	115					
\mathbf{A}	AN	SYS C	ode	119					

CONTENTS	xi
Bibliography	123

xii CONTENTS

List of Abbreviations and Symbols

AC Alternating Current

ADC Analog to Digital Converter

AGC Automatic Gain Control

ASIC Application Specific Integrated Circuit

CC Clamped-Clamped Beam

CMOS Complementary Metal Oxide Semiconductor

DC Direct Current

FEM Finite Element Method

FF Free-Free Beam

AGC Automatic gain control.

HPF High Pass Filter

IC Integrated Circuit

LSB Least Significant Bit

MEMS Micro Electro-Mechanical Systems

MRO MEMS Resonator Oscillator

MRO MEMS Resonator Oscillator

OTA Operational Transconductance Amplifier

PFD Phase Frequency Detector

xiv CONTENTS

ppm Part Per Million

PVT Process, supply voltage and temperature variation.

Q-factor Quality factor

TIA Trans-Impedance Amplifier

VGA Variable Gain Amplifier

XO Quartz Crystal Oscillator

XTAL Quartz Crystal

_ _

 ΔC Equivalent anti-resonance capacitance after anti-resonance

cancellation.

 ω_D Optimum oscillation angular frequency.

 ω_{NC} Modified anti-resonance angular frequency after ant-

resonance cancellation.

 ω_N Anti-Resonance angular frequency.

 ω_x Natural resonance angular frequency.

 C_c Anti-Resonance cancellation capacitance.

 C_L Load capacitance.

 C_p Parasitic feed-through capacitance.

 C_x Resonator motional capacitance.

 L_x Resonator motional inductance.

 Q_D Q-Factor at angular frequency ω_D .

 Q_{eff} Effective Q-factor.

 Q_{NC} Q-factor at the modified anti-resonance angular fre-

quency ω_{NC} .

 Q_N Q-Factor at angular frequency ω_N .

 R_x Resonator motional resistance.

CONTENTS xv

 Y_L Load admittance.

 Y_x Crystal admittance.

DD Depth of the phase dip in the resonator phase re-

sponse.

DW Width of the phase dip in the resonator phase re-

sponse.

GR Resonator gain ratio.