Ain Shams University Faculty of Science Chemistry Department

Influence of gamma irradiation on the properties of some synthetic rubber-based filler composites

A Thesis

Submitted for the Degree of Master of Science
As Partial Fulfillment for Requirements of Master of Science
"Chemistry Department"

$\mathbf{B}\mathbf{y}$

Eman Mohammed Hamdy Hassan

B.Sc. in Major Chemistry, Faculty of Science
Ain Shams University
2006

Under Supervision of

Dr. Ebtissam Ahmed Saad

Professor of Inorganic and radiation Chemistry, Faculty of Science, Ain Shams University

Dr. Medhat Mohammed Hassan

Associate Professor of Radiation Chemistry, National Center for Radiation Research & Technology

Dr. Khaled Farouk Elnemr

Associate Professor of Radiation Chemistry, National Center for Radiation Research & Technology

Ain Shams University Faculty of Science Chemistry Department

Approval Sheet

Influence of gamma irradiation on the properties of some synthetic rubber-based filler composites

$\mathbf{B}\mathbf{y}$

Eman Mohammed Hamdy Hassan

B.Sc. in major chemistry, Faculty of Science
Ain Shams University
2006

This thesis for Master degree has been approved by:

Dr. Ebtissam Ahmed Saad

Professor of Inorganic and radiation Chemistry, Faculty of Science, Ain Shams University

Dr. Medhat Mohammed Hassan

Ass. Professor of Radiation Chemistry, National Center for Radiation Research & Technology

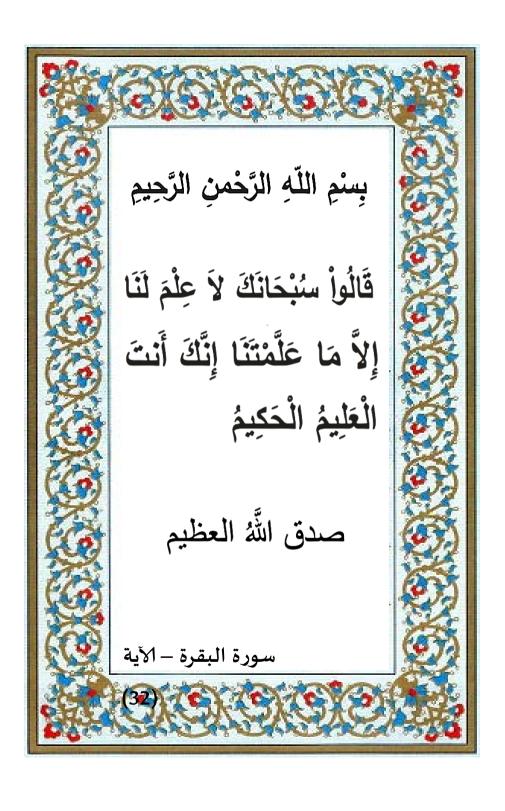
Dr. Khaled Farouk Elnemr

Ass. Professor of Radiation Chemistry, National Center for Radiation Research & Technology

Head of Chemistry Department Prof. Dr. Hamed Younis Derbala

Ain Shams University Faculty of Science Chemistry Department

Student Name: Eman Mohammed Hamdy Hassan


Scientific Degree: M.Sc.

Faculty Name: Faculty of Science – Ain Shams University

Graduation Year: 2006

Granting Year:

Head of Chemistry Department Prof. Dr. Hamed Younis Derbala

Acknowledgement

First of all, the main thanks to "Allah" to whom I always pray and under the light of his "HOLLY FACE" I live and go.

I am grateful to **Prof .Dr. Ebtissam A. Saad**; Professor of Inorganic and radiation Chemistry, Faculty of Science, Ain Shams University .for her great efforts, honest assistance, supervision and help to have this work done.

I would like to offer my deep thanks to **Asst. Prof. Dr. Medhat M. Hassan**; Asst. Prof. in National Center for Radiation Research & Technology, For his continuouse guidence, interest, valuable discussion, supervision and advices throughout this work.

I would like to express my sincere gratitude and respect to Asst. Prof. Dr. Khaled F. El-nemr; Asst. Prof. in National Center for Radiation Research & Technology, for his masterly teaching, valuable advices, honest assistance. wise guidance, kind supervision and continuous encouragement.

I wish to express my sincere gratitude to all the members and colleagues in the National Center for Radiation Research & Technology and Faculty of Science, Ain Shams University, for their efforts, help and friendship throughout my research.

Contents

List	of	Tab	les

List of Figures

Aim of the work

Abstract

I.1.Polymer

List of Abbreviations

I. INTRODUCTION

1

I.1.1. Classification of polymers	1
I.2. Elastomers	2
I.2.1.Types of rubber	2
I.2.1.1.Natural rubber	2
I.2.1.2.Synthetic rubber	3
I.3.Waste rubber	4
I.3.1.Classification of waste rubber	4
I.3.2.Waste rubber recycling	4
I.3.2.1.Waste rubber landfills	5
I.3.2.2.Waste rubber as concrete additive	5
I.3.2.3.Asphalt rubber	6
I.3.2.4.Scrap rubber as fuel source	6
I.3.2.5. Tyre Pyrolysis	6
I.4.Additives	7

1.4.1.Classification of additives	9
I.4.1.1.Inorganic additives	9
I.4.1.1.1.Crosslinked elastomer by inorganic additives	10
I.4.1.1.2.Action of inorganic additives	10
I.5.Filler and reinforcement composites	10
I.5.1.Role and mechanism of action	10
I.5.2.Type of filler and reinforcement materials	11
I.5.2.1.Carbon black	11
I.5.2.2.Carbon Black Surface Chemistry	11
I.5.2.3.Silica filler	12
I.6.Polymer structural modification using filler	14
I.7.Radiation sources	15
I.7.1.Gamma ray irradiation	15
I.7.2.Interaction of ionizing radiation with polymeric materials	16
I.7.3.Radiation-induced crosslinking of polymer	17
I.7.4.Radiation-induced chain scission and oxidation of polymers	18
I.7.5.Radiation processing of rubber	19
I.7.6. Effect of gamma radiation on Acrylonitrile-	20
Butadiene Rubber (NBR)	

II. LITERATURE REVIEW

II.1. Waste polymer	21
II.1.1. Waste rubber recycling	21
II.2. Application of waste polymer	23
II.3.Recycling and uses of waste tire rubber	27
II.3.1.Waste rubber ash	29
II.4. Polymer composite	32
II.5. Radiation and compatibility	34
II.6. Modification of polymer and inorganic additives	38
II.7.Rubber compatibility	43
II.7.1. Chemical compatibility	43
II.7.2. Compatibility by radiation	43
II.8.Acrylonitrile-Butadiene Rubber (NBR) composites	45
II.9. Effect of radiation on rubber composites	50
III-MATERIALS AND TECHNIQ	UES
III.1- Materials	53
III.2- Techniques	58
III.2.1- Modification of waste rubber ash (WRA)	58
III.2.1.1- Modification by silane (VTES)	58
III.2.1.2- Modification by acrylate monomer (PETiA)	58
III.3- Preparation of the waste rubber Ash (WRA) rubber composites	58

III.3.1- Mixing procedure	58
III.3.2- Preparation of samples for irradiation	60
III.4- Irradiation procedure	60
III.5- Measurements	60
III.5.1- Mechanical properties	60
III.5.1.1- Tensile strength, (TS) and Elongation percent at break point, (Eb)	60
III.5.1.2- Modulus at 100% elongation	61
III.5.1.3- Hardness measurements	62
III.6- Physico-chemical measurements	62
III.6.1- Soluble fraction (SF)	62
III.6.2- Crosslink density measurement	62
III.7- The X-ray diffraction (XRD) measurements	64
III.8- Infrared spectroscopic analysis (FTIR)	64
III.9- Thermogravimetric Analysis measurements	64
III. 10 -Effect of fuels on NBR	64
IV. RESULTS AND DISCUSSION	
IV.1. Fourier transforms infrared spectroscopy (FTIR)	66
IV.2. X-ray diffraction (XRD)	67
IV.3. Mechanical Properties	68
IV.3.1. Tensile Strength	68
IV.3.2. Elongation to break point (Eb)	72

IV.3.3. Modulus at 100% strain (M100)	77	
IV.3.4. Hardness	80	
IV.4. Physico-Chemical Properties	82	
IV.4.1. Soluble fraction (SF)	83	
IV.4.2. Volume fraction of rubber in swollen gel (Vr)	85	
IV.4.3. Crosslink density (Vo)	87	
IV.5. Thermogravimetric analysis (TGA)	90	
IV.6. Effect of fuels on NBR composites	100	

List of Tables

Table		Page
Table [1]	The elemental composition of WRA by X-ray fluorescence .	57
Table [2]	Formulation of NBR rubber composites.	59
Table [3]	decomposition temperature of NBR loaded by WRA , WRA – AC and WRA – SN at different weight losses at 0 $$ kGy	92
Table [4]	Decomposition temperature of NBR loaded by WRA, WRA – AC and WRA – SN at different weight losses at 25 kGy	94
Table [5]	Decomposition temperature of NBR loaded by WRA , WRA – AC and WRA – SN at different weight losses at 100 kGy	97

List of Figures

Figure		page
Fig.1	FTIR spectra for WRA powder, WRA-Sn and WRA-Ac composites.	67
Fig.2	XRD spectra of WRA powder, WRA-Sn and WRA-Ac composites.	68
Fig.3	Effect of irradiation dose on tensile strength for NBR / WRA composites at different composition.	70
Fig.4	Effect of irradiation dose on tensile strength for NBR / WRA-Sn Composites at different composition.	71
Fig.5	Effect of irradiation dose on tensile strength for NBR / WRA-Ac Composites at different composition.	72
Fig.6	Effect of irradiation dose on elongation at break for NBR / WRA composites at different composition	73
Fig.7	Effect of irradiation dose on elongation at break for NBR / WRA-Ac composites at different composition	74
Fig.8	Effect of irradiation dose on elongation at break for NBR / WRA-Sn composites at different composition	77
Fig.9	Effect of irradiation dose on modulus at 100% strain for NBR / WRA composites at different composition	79
Fig.10	Effect of irradiation dose on modulus at 100% strain for NBR / WRA-Sn composites at different composition	79
Fig.11	Effect of irradiation dose on E-modulus for NBR / WRA-Ac composites at different composition	80
Fig.12	Variation of hardness with irradiation dose for NBR / WRA composites at different composition	81
Fig.13	Variation of hardness with irradiation dose for NBR / WRA-Sn composites at different composition.	82
Fig.14	Variation of hardness with irradiation dose for NBR / WRA-Ac composites at different composition.	82

Fig.15	Effect of irradiation dose on the soluble fraction for NBR / WRA composites at different composition	84
Fig.16	Effect of irradiation dose on the soluble fraction for NBR / WRA-Sn composites at different composition	84
Fig.17	Effect of irradiation dose on the soluble fraction for NBR / WRA-Ac composites at different composition	85
Fig.18	Variation of the volume fraction with irradiation dose for NBR / WRA composites at different composition	86
Fig.19	Variation of the volume fraction with irradiation dose for NBR / WRA-Sn composites at different composition	87
Fig.20	Variation of the volume fraction with irradiation dose for NBR / WRA-Ac composites at different composition	87
Fig.21	Variation of the crosslink density with irradiation dose for NBR / WRA composites at different composition	89
Fig.22	Variation of the crosslink density with irradiation dose for NBR / WRA-Sn composites at different composition	89
Fig.23	Variation of the crosslink density with irradiation dose for NBR / WRA-Ac composites at different composition	90
Fig.24	Residual weight as a function of heating temperature for unirradiated NBR composites loaded by 40 phr WRA, WRA-Ac and WRA-Sn	92
Fig.25	Rate of thermal decomposition reaction for unirradiated NBR composites loaded by 40 phr WRA, WRA-Ac and WRA-Sn	93
Fig.26	Residual weight as a function of heating temperature for NBR composites loaded by 40 phr WRA, WRA-Ac and WRA-Sn at 25 KGv	94

Fig.27	Rate of thermal decomposition reaction for NBR composites loaded by 40 phr WRA, WRA-Ac and WRA-Sn at 25 KGy	95
Fig.28	Residual weight as a function of heating temperature for NBR composites loaded by 40 phr WRA, WRA-Ac and WRA-Sn at 100 KGy	96
Fig.29	Rate of thermal decomposition reaction for NBR composites loaded by 40 phr WRA, WRA-Ac and WRA-Sn at 100 KGy	97
Fig.30	Residual weight as a function of heating temperature for NBR rubber matrix at different irradiation doses	98
Fig.31	Residual weight as a function of heating temperature for NBR / WRA composites loaded by 40phr irradiated with different irradiation doses	99
Fig.32	Residual weight as a function of heating temperature for NBR / WRA-Ac composites loaded by 40 phr irradiated with different irradiation doses	99
Fig.33	Residual weight as a function of heating temperature for NBR / WRA-Sn composites loaded by 40 phr irradiated with different irradiation doses	100
Fig.34	Change of weight as a function of filler concentration for NBR rubber composites immersed in fuel for 22 h	102
Fig.35	Change of weight as a function of filler concentration for NBR rubber composites immersed in fuel for 70 h	103
Fig.36	Change of weight as a function of filler concentration for NBR rubber composites immersed in fuel at different hours	104

Aim of the work

Recycling of waste rubber is very important problem due to its huge amount and their negative impact on environment. To eliminate or reduce waste rubber from the environment and to reduce costs of some rubber goods, attempts are being made to reuse waste rubber. Especially, the nature of waste rubber exists in thermosetting state. The aim of this work is to burnt waste rubber completely at 600 °C in a muffle, then the ash residue obtained after burning process collected and used as a filler in preparing NBR rubber composites after treated by silane (VTES) and acrylate monomer (PETiA). Also, modified the physical and chemical properties of Acrylonitrile Butadiene Rubber (NBR) composites using gamma radiation and treated rubber ash.

Filler play an important role for polymer reinforcement cost effective end products. The present work investigates the impact of gamma irradiation doses (from 25 up to 150 kGy) on NBR loaded with treated and untreated WRA as reinforced filler over range of content upto 40 phr.

In this context, some physico-mechanical testing, namely TS, elongation at break, elastic modulus, hardness, TGA,IR, X-ray diffraction (XRD) Soluble Fraction, (SF), Determination of cross-link density (v) investigations were implemented.

It was found that applied fillers revealed expectedly different mechanical properties appreciably depending critically on the microstructure, i.e. aspect ratio and degree of dispersion of the filler and adhesion at the filler-matrix interface.