

Measuring Absolute Distance Using Frequency Scanning Interferometry

A Thesis

Submitted for Faculty of Science In partial fulfillment for requirements of the degree of Master of Science in Physics

By

Haitham Mohamed Hussein Mohamed

B. Sc. Ain Shams University (2007)

Supervised by

Prof. Dr. Mohamed Medhat Abdelrahman

Prof. of Optics and Spectroscopy Faculty of Science, Ain Shams University

Prof. Dr. Mohamed Abdelfatah Sobee

Prof. of Laser and Optics National Institute for Standards (NIS)

Dr. Osama Mohamed Elsayed Terra

Researcher of Laser and Optics National Institute for Standards (NIS)

Master Degree of Physics

Name: Haitham Mohamed Hussein Mohamed

Title: Measuring Absolute Distance Using Frequency Scanning

Interferometry

Degree: Master of Science (Physics)

Supervisors	Signature
Prof. Dr. Mohamed Medhat Abdelrahman Prof. of Optics and Spectroscopy Faculty of Science, Ain Shams University	••••••
Prof. Dr. Mohamed Abdelfatah Sobee Prof. of Laser and Optics National Institute for Standards (NIS)	••••••
Dr. Osama Mohamed Elsayed Terra Researcher of Laser and Optics National Institute for Standards (NIS)	•••••

Acknowledgement

Praise be to Allah, the Lord of the Worlds

I would like to express my sincere thanks to **Prof. Dr. Mohamed Medhat Abd El-Rahman**, professor of Optics, faculty of science, Ain-Shams University, for his guidance, continuous support of my M. Sc. study and effort in developing the content and format of the thesis.

I am very grateful to **Prof. Dr. Mohamed Abd-Alfatah Sobee**, National Institute for Standards, for his help and advice throughout the research.

I would like to express my sincere gratitude to my advisor **Dr. Osama Mohamed Elsayed Terra**, National Institute for Standards, for his patience, motivation, and immense knowledge. His guidance helped me in all the time of research, experimental work, and writing of this thesis.

Abstract

Unlike the conventional displacement interferometers where only the incremental displacement of a target is measured, absolute distance interferometers measure distance to a fixed target. In this thesis, frequency scanning interferometry (FSI) is used to measure distances from 1 to 5 meters absolutely. The FSI system consists mainly of, an external cavity tunable diode laser, Michelson interferometer, Fabry-Perot cavity, and a simple beam collimation system.

The external cavity tunable diode laser (ECDL) has a wavelength scanning range of 10 nm that covers the wavelength range from 665 nm to 675 nm. As with most of the tunable lasers, the ECDL contains one modehop in the middle of the scanning range. This mode-hop is considered as a drawback when the laser is used for distance measurements. The Michelson interferometer is a typical one with two high reflective mirrors and a beam splitter and a photodetector to detect the fringes. The Fabry-Pérot cavity is made out of a spacer and two mirrors with reflectivity of 50:50. The cavity spacer is made from an ultra-low-expansion glass (ULE-glass) of a thermal expansion of 0 ± 30 ppb/°C (from 5°C to 35°C). The thermal expansion of ULE-glass is lower 100 times than the normal glass. Therefore, the FP cavity length is independent from the environmental temperature changes and can be used as a frequency reference to determine the laser scanning range.

The distances from 1 to 5 m are measured by scanning the ECDL while acquiring interference signals from both the Michelson interferometer and the FP cavity. A software program is developed to count the acquired fringes in such a way that it avoids counting the fractional fringes and removes the mode-hop defected parts of the fringes without significantly

Abstract

affecting the accuracy of the distance measurement. The achieved distance repeatability of the constructed system is ± 3.9 L μm .

A high accurate positioning stage with 1 μ m accuracy over the 26 mm scanning range is used to estimate the setup accuracy. The combined uncertainty of the setup is found to ± 59 L μ m which is limited by the accuracy of the used calibration stage.

Key words: Frequency scanning, Interference, Absolute distance, Michelson interferometer, Fabry-Pérot interferometer.

Contents

Contents

Acknowledgement	I
Abstract	II
List of figures	VI
List of tables	VIII
1. Introduction	1
1.1 Historical background	1
1.2 Traceability	4
1.3 Time-of-flight technique for distance measurement	6
1.4 Interferometry for distance measurement	7
1.4.1 Interference principle	7
1.4.2 Michelson Interferometer	10
1.4.3 Fabry-Pérot Interferometer	14
1.4.4 Frequency scanning interferometry	21
2. Experimental Work	25
2.1 System configuration	25
2.2 The tunable laser	25
2.3 Collimation system	29
2.4 Michelson Measuring Interferometer	31
2.5 Fabry-Pérot Reference Interferometer	32
2.6 Fringes processing	33
2.6.1 Fringe detection electronics	35
2.6.2 Spacing between two successive frequencies/wavelengths	36
2.7 Laser Mode-hop removal	37
2.8 Refractive index of air and environmental conditions	38
2.9 Calibration of Laser Distance Meter	39
3. Results and Discussion	42

Contents	
3.1 Absolute distances measurements	42
3.2 Calibration of Fabry-Pérot interferometer FSR	53
3.3 Calibration of Laser Distance Meter	60
3.4 Uncertainty analysis	61
Conclusion	67
Appendices	69
A. System control (LabVIEW control)	69
B. Data processing (Matlab code)	75
References	85

List of Figures

List of figures

Figure 1.1: Ancient Egyptian royal cubit	2
Figure 1.2: Constructive and Destructive interference	7
Figure 1.3: Phasor components for superposition of two harmonic waves	9
Figure 1.4: Michelson interferometer. BS : Beam splitter, M_1 , M_2 : Highly reflecting mirrors, L : focusing lens, d_M : Displacement	11
Figure 1.5: Geometrical rearrangement of Michelson interferometer	14
Figure 1.6: Light interaction with a single surface	14
Figure 1.7: Light propagation inside F-P interferometer	15
Figure 1.8: Extra path length of a ray reflected from two surfaces	16
Figure 1.9: Transmitted intensity from a Fabry-Pérot interferometer versus phase change	20
Figure 1.10: Simultaneous fringe detection of F-P Reference interferometer and Michelson measuring interferometer	23
Figure 2.1: System used in measuring absolute distance	26
Figure 2.2: Tunable diode laser head and controller	27
Figure 2.3: Laser head inside view	27
Figure 2.4: Cavity of the tunable laser	29
Figure 2.5: Beam expander system using ray optics	30
Figure 2.6: Beam divergence a long distance	31
Figure 2.7: ULE F-P reference interferometer	32
Figure 2.8: Fringe matching along measuring and reference signals	34
Figure 2.9: Laser mode hop	38
Figure 2.10: LDM calibration setup	41
Figure 3.1: Repeatability of the measured distance	62
Figure 3.2: Fringes cutting uncertainty	64

List of Figures			
Figure A.1: LabVIEW program front panel	70		
Figure A.2: Labview Laser control block diagram	72		
Figure A.3: LabVIEW oscilloscope block diagram	73		
Figure A.4: Mathscript node	74		
Figure B.1: Oscilloscope recorded signals	80		
Figure B.2: Cavity and interferometer signals after removing the start and end noise	81		
Figure B.3: Set the start and end peak matching	82		
Figure B.4: Laser mode hop	83		

List of Tables

List of tables

Table 2.1: LDM calibration	41
Table 3.1: Results of measured distance of 1 meter	43
Table 3.2: Results of measured distance of 2 meter	45
Table 3.3: Results of measured distance of 3 meter	47
Table 3.4: Results of measured distance of 4 meter	49
Table 3.5: Results of measured distance of 5 meter	51
Table 3.6: Results of first measurement of FSR calibration	55
Table 3.7: Results of second measurement of FSR calibration	56
Table 3.8: Results of third measurement of FSR calibration	57
Table 3.9: Results of fourth measurement of FSR calibration	58
Table 3.10: Results of fifth measurement of FSR calibration	59
Table 3.11: FSR calibration final result	60
Table 3.12: LDM calibration	60
Table 3.13: Uncertainty budget of measured distance	64

Chapter 1

Introduction

Length metrology plays a crucial role in industry and commerce. However, to facilitate the international trade, length measurements must be traceable to the national primary standard and hence to the international standards through a chain of measurements. The unit of length, the meter, is one of the seven base units in the International System of units (SI). It is currently defined as "The length of the path traveled by light in vacuum during a time interval of 1/299,792,458 of a second" [1, 2].

In several applications, like geodesy, the term "distance" is used instead of length to describe the length of the path from the observer to a target. However, if only incremental motion of the target relative to the initial position is measured, the term "displacement" is used. It is worth also to mention that, in several scientific publications, the term "Absolute distance" is used to clearly distinguish between distance and displacement.

In this chapter, a historical overview about length metrology, traceability of some length measurements, description of some optical techniques used in length metrology, and application of frequency scanning interferometry in absolute distance measurement are discussed.

1.1 Historical background

Throughout the history, many standards of length were established starting from the body parts to the wavelength and speed of light waves. The